Metamath Proof Explorer


Theorem phtpcco2

Description: Compose a path homotopy with a continuous map. (Contributed by Mario Carneiro, 6-Jul-2015)

Ref Expression
Hypotheses phtpcco2.f φFphJG
phtpcco2.p φPJCnK
Assertion phtpcco2 φPFphKPG

Proof

Step Hyp Ref Expression
1 phtpcco2.f φFphJG
2 phtpcco2.p φPJCnK
3 isphtpc FphJGFIICnJGIICnJFPHtpyJG
4 1 3 sylib φFIICnJGIICnJFPHtpyJG
5 4 simp1d φFIICnJ
6 cnco FIICnJPJCnKPFIICnK
7 5 2 6 syl2anc φPFIICnK
8 4 simp2d φGIICnJ
9 cnco GIICnJPJCnKPGIICnK
10 8 2 9 syl2anc φPGIICnK
11 4 simp3d φFPHtpyJG
12 n0 FPHtpyJGffFPHtpyJG
13 11 12 sylib φffFPHtpyJG
14 5 adantr φfFPHtpyJGFIICnJ
15 8 adantr φfFPHtpyJGGIICnJ
16 2 adantr φfFPHtpyJGPJCnK
17 simpr φfFPHtpyJGfFPHtpyJG
18 14 15 16 17 phtpyco2 φfFPHtpyJGPfPFPHtpyKPG
19 18 ne0d φfFPHtpyJGPFPHtpyKPG
20 13 19 exlimddv φPFPHtpyKPG
21 isphtpc PFphKPGPFIICnKPGIICnKPFPHtpyKPG
22 7 10 20 21 syl3anbrc φPFphKPG