| Step |
Hyp |
Ref |
Expression |
| 1 |
|
phtpyco2.f |
|
| 2 |
|
phtpyco2.g |
|
| 3 |
|
phtpyco2.p |
|
| 4 |
|
phtpyco2.h |
|
| 5 |
|
cnco |
|
| 6 |
1 3 5
|
syl2anc |
|
| 7 |
|
cnco |
|
| 8 |
2 3 7
|
syl2anc |
|
| 9 |
1 2
|
phtpyhtpy |
|
| 10 |
9 4
|
sseldd |
|
| 11 |
1 2 3 10
|
htpyco2 |
|
| 12 |
1 2 4
|
phtpyi |
|
| 13 |
12
|
simpld |
|
| 14 |
13
|
fveq2d |
|
| 15 |
|
iitopon |
|
| 16 |
|
txtopon |
|
| 17 |
15 15 16
|
mp2an |
|
| 18 |
|
cntop2 |
|
| 19 |
1 18
|
syl |
|
| 20 |
|
toptopon2 |
|
| 21 |
19 20
|
sylib |
|
| 22 |
1 2
|
phtpycn |
|
| 23 |
22 4
|
sseldd |
|
| 24 |
|
cnf2 |
|
| 25 |
17 21 23 24
|
mp3an2i |
|
| 26 |
|
0elunit |
|
| 27 |
|
simpr |
|
| 28 |
|
opelxpi |
|
| 29 |
26 27 28
|
sylancr |
|
| 30 |
|
fvco3 |
|
| 31 |
25 29 30
|
syl2an2r |
|
| 32 |
|
df-ov |
|
| 33 |
|
df-ov |
|
| 34 |
33
|
fveq2i |
|
| 35 |
31 32 34
|
3eqtr4g |
|
| 36 |
|
iiuni |
|
| 37 |
|
eqid |
|
| 38 |
36 37
|
cnf |
|
| 39 |
1 38
|
syl |
|
| 40 |
39
|
adantr |
|
| 41 |
|
fvco3 |
|
| 42 |
40 26 41
|
sylancl |
|
| 43 |
14 35 42
|
3eqtr4d |
|
| 44 |
12
|
simprd |
|
| 45 |
44
|
fveq2d |
|
| 46 |
|
1elunit |
|
| 47 |
|
opelxpi |
|
| 48 |
46 27 47
|
sylancr |
|
| 49 |
|
fvco3 |
|
| 50 |
25 48 49
|
syl2an2r |
|
| 51 |
|
df-ov |
|
| 52 |
|
df-ov |
|
| 53 |
52
|
fveq2i |
|
| 54 |
50 51 53
|
3eqtr4g |
|
| 55 |
|
fvco3 |
|
| 56 |
40 46 55
|
sylancl |
|
| 57 |
45 54 56
|
3eqtr4d |
|
| 58 |
6 8 11 43 57
|
isphtpyd |
|