Metamath Proof Explorer


Theorem phtpyi

Description: Membership in the class of path homotopies between two continuous functions. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses isphtpy.2 φFIICnJ
isphtpy.3 φGIICnJ
phtpyi.1 φHFPHtpyJG
Assertion phtpyi φA010HA=F01HA=F1

Proof

Step Hyp Ref Expression
1 isphtpy.2 φFIICnJ
2 isphtpy.3 φGIICnJ
3 phtpyi.1 φHFPHtpyJG
4 1 2 isphtpy φHFPHtpyJGHFIIHtpyJGs010Hs=F01Hs=F1
5 3 4 mpbid φHFIIHtpyJGs010Hs=F01Hs=F1
6 5 simprd φs010Hs=F01Hs=F1
7 oveq2 s=A0Hs=0HA
8 7 eqeq1d s=A0Hs=F00HA=F0
9 oveq2 s=A1Hs=1HA
10 9 eqeq1d s=A1Hs=F11HA=F1
11 8 10 anbi12d s=A0Hs=F01Hs=F10HA=F01HA=F1
12 11 rspccva s010Hs=F01Hs=F1A010HA=F01HA=F1
13 6 12 sylan φA010HA=F01HA=F1