Step |
Hyp |
Ref |
Expression |
1 |
|
isphtpy.2 |
⊢ ( 𝜑 → 𝐹 ∈ ( II Cn 𝐽 ) ) |
2 |
|
isphtpy.3 |
⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) |
3 |
|
phtpyi.1 |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ) |
4 |
1 2
|
isphtpy |
⊢ ( 𝜑 → ( 𝐻 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ↔ ( 𝐻 ∈ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ∧ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 𝐻 𝑠 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 𝐻 𝑠 ) = ( 𝐹 ‘ 1 ) ) ) ) ) |
5 |
3 4
|
mpbid |
⊢ ( 𝜑 → ( 𝐻 ∈ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ∧ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 𝐻 𝑠 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 𝐻 𝑠 ) = ( 𝐹 ‘ 1 ) ) ) ) |
6 |
5
|
simprd |
⊢ ( 𝜑 → ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 𝐻 𝑠 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 𝐻 𝑠 ) = ( 𝐹 ‘ 1 ) ) ) |
7 |
|
oveq2 |
⊢ ( 𝑠 = 𝐴 → ( 0 𝐻 𝑠 ) = ( 0 𝐻 𝐴 ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑠 = 𝐴 → ( ( 0 𝐻 𝑠 ) = ( 𝐹 ‘ 0 ) ↔ ( 0 𝐻 𝐴 ) = ( 𝐹 ‘ 0 ) ) ) |
9 |
|
oveq2 |
⊢ ( 𝑠 = 𝐴 → ( 1 𝐻 𝑠 ) = ( 1 𝐻 𝐴 ) ) |
10 |
9
|
eqeq1d |
⊢ ( 𝑠 = 𝐴 → ( ( 1 𝐻 𝑠 ) = ( 𝐹 ‘ 1 ) ↔ ( 1 𝐻 𝐴 ) = ( 𝐹 ‘ 1 ) ) ) |
11 |
8 10
|
anbi12d |
⊢ ( 𝑠 = 𝐴 → ( ( ( 0 𝐻 𝑠 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 𝐻 𝑠 ) = ( 𝐹 ‘ 1 ) ) ↔ ( ( 0 𝐻 𝐴 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 𝐻 𝐴 ) = ( 𝐹 ‘ 1 ) ) ) ) |
12 |
11
|
rspccva |
⊢ ( ( ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 𝐻 𝑠 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 𝐻 𝑠 ) = ( 𝐹 ‘ 1 ) ) ∧ 𝐴 ∈ ( 0 [,] 1 ) ) → ( ( 0 𝐻 𝐴 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 𝐻 𝐴 ) = ( 𝐹 ‘ 1 ) ) ) |
13 |
6 12
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 0 [,] 1 ) ) → ( ( 0 𝐻 𝐴 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 𝐻 𝐴 ) = ( 𝐹 ‘ 1 ) ) ) |