Step |
Hyp |
Ref |
Expression |
1 |
|
isphtpy.2 |
⊢ ( 𝜑 → 𝐹 ∈ ( II Cn 𝐽 ) ) |
2 |
|
isphtpy.3 |
⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) |
3 |
|
phtpyi.1 |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ) |
4 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
5 |
1 2 3
|
phtpyi |
⊢ ( ( 𝜑 ∧ 1 ∈ ( 0 [,] 1 ) ) → ( ( 0 𝐻 1 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 𝐻 1 ) = ( 𝐹 ‘ 1 ) ) ) |
6 |
4 5
|
mpan2 |
⊢ ( 𝜑 → ( ( 0 𝐻 1 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 𝐻 1 ) = ( 𝐹 ‘ 1 ) ) ) |
7 |
6
|
simpld |
⊢ ( 𝜑 → ( 0 𝐻 1 ) = ( 𝐹 ‘ 0 ) ) |
8 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
9 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
10 |
9
|
a1i |
⊢ ( 𝜑 → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
11 |
1 2
|
phtpyhtpy |
⊢ ( 𝜑 → ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ⊆ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ) |
12 |
11 3
|
sseldd |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ) |
13 |
10 1 2 12
|
htpyi |
⊢ ( ( 𝜑 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( ( 0 𝐻 0 ) = ( 𝐹 ‘ 0 ) ∧ ( 0 𝐻 1 ) = ( 𝐺 ‘ 0 ) ) ) |
14 |
8 13
|
mpan2 |
⊢ ( 𝜑 → ( ( 0 𝐻 0 ) = ( 𝐹 ‘ 0 ) ∧ ( 0 𝐻 1 ) = ( 𝐺 ‘ 0 ) ) ) |
15 |
14
|
simprd |
⊢ ( 𝜑 → ( 0 𝐻 1 ) = ( 𝐺 ‘ 0 ) ) |
16 |
7 15
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = ( 𝐺 ‘ 0 ) ) |
17 |
6
|
simprd |
⊢ ( 𝜑 → ( 1 𝐻 1 ) = ( 𝐹 ‘ 1 ) ) |
18 |
10 1 2 12
|
htpyi |
⊢ ( ( 𝜑 ∧ 1 ∈ ( 0 [,] 1 ) ) → ( ( 1 𝐻 0 ) = ( 𝐹 ‘ 1 ) ∧ ( 1 𝐻 1 ) = ( 𝐺 ‘ 1 ) ) ) |
19 |
4 18
|
mpan2 |
⊢ ( 𝜑 → ( ( 1 𝐻 0 ) = ( 𝐹 ‘ 1 ) ∧ ( 1 𝐻 1 ) = ( 𝐺 ‘ 1 ) ) ) |
20 |
19
|
simprd |
⊢ ( 𝜑 → ( 1 𝐻 1 ) = ( 𝐺 ‘ 1 ) ) |
21 |
17 20
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) |
22 |
16 21
|
jca |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 0 ) = ( 𝐺 ‘ 0 ) ∧ ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) ) |