Metamath Proof Explorer


Theorem phtpyhtpy

Description: A path homotopy is a homotopy. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses isphtpy.2 ( 𝜑𝐹 ∈ ( II Cn 𝐽 ) )
isphtpy.3 ( 𝜑𝐺 ∈ ( II Cn 𝐽 ) )
Assertion phtpyhtpy ( 𝜑 → ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ⊆ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) )

Proof

Step Hyp Ref Expression
1 isphtpy.2 ( 𝜑𝐹 ∈ ( II Cn 𝐽 ) )
2 isphtpy.3 ( 𝜑𝐺 ∈ ( II Cn 𝐽 ) )
3 1 2 isphtpy ( 𝜑 → ( ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ↔ ( ∈ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ∧ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 𝑠 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 𝑠 ) = ( 𝐹 ‘ 1 ) ) ) ) )
4 simpl ( ( ∈ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ∧ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 𝑠 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 𝑠 ) = ( 𝐹 ‘ 1 ) ) ) → ∈ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) )
5 3 4 syl6bi ( 𝜑 → ( ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) → ∈ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ) )
6 5 ssrdv ( 𝜑 → ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ⊆ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) )