Step |
Hyp |
Ref |
Expression |
1 |
|
isphtpy.2 |
⊢ ( 𝜑 → 𝐹 ∈ ( II Cn 𝐽 ) ) |
2 |
|
isphtpy.3 |
⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) |
3 |
1 2
|
isphtpy |
⊢ ( 𝜑 → ( ℎ ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ↔ ( ℎ ∈ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ∧ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝐹 ‘ 1 ) ) ) ) ) |
4 |
|
simpl |
⊢ ( ( ℎ ∈ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ∧ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝐹 ‘ 1 ) ) ) → ℎ ∈ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ) |
5 |
3 4
|
syl6bi |
⊢ ( 𝜑 → ( ℎ ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) → ℎ ∈ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ) ) |
6 |
5
|
ssrdv |
⊢ ( 𝜑 → ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ⊆ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ) |