Step |
Hyp |
Ref |
Expression |
1 |
|
isphtpy.2 |
⊢ ( 𝜑 → 𝐹 ∈ ( II Cn 𝐽 ) ) |
2 |
|
isphtpy.3 |
⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) |
3 |
|
cntop2 |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → 𝐽 ∈ Top ) |
4 |
|
oveq2 |
⊢ ( 𝑗 = 𝐽 → ( II Cn 𝑗 ) = ( II Cn 𝐽 ) ) |
5 |
|
oveq2 |
⊢ ( 𝑗 = 𝐽 → ( II Htpy 𝑗 ) = ( II Htpy 𝐽 ) ) |
6 |
5
|
oveqd |
⊢ ( 𝑗 = 𝐽 → ( 𝑓 ( II Htpy 𝑗 ) 𝑔 ) = ( 𝑓 ( II Htpy 𝐽 ) 𝑔 ) ) |
7 |
6
|
rabeqdv |
⊢ ( 𝑗 = 𝐽 → { ℎ ∈ ( 𝑓 ( II Htpy 𝑗 ) 𝑔 ) ∣ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 ) = ( 𝑓 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝑓 ‘ 1 ) ) } = { ℎ ∈ ( 𝑓 ( II Htpy 𝐽 ) 𝑔 ) ∣ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 ) = ( 𝑓 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝑓 ‘ 1 ) ) } ) |
8 |
4 4 7
|
mpoeq123dv |
⊢ ( 𝑗 = 𝐽 → ( 𝑓 ∈ ( II Cn 𝑗 ) , 𝑔 ∈ ( II Cn 𝑗 ) ↦ { ℎ ∈ ( 𝑓 ( II Htpy 𝑗 ) 𝑔 ) ∣ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 ) = ( 𝑓 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝑓 ‘ 1 ) ) } ) = ( 𝑓 ∈ ( II Cn 𝐽 ) , 𝑔 ∈ ( II Cn 𝐽 ) ↦ { ℎ ∈ ( 𝑓 ( II Htpy 𝐽 ) 𝑔 ) ∣ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 ) = ( 𝑓 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝑓 ‘ 1 ) ) } ) ) |
9 |
|
df-phtpy |
⊢ PHtpy = ( 𝑗 ∈ Top ↦ ( 𝑓 ∈ ( II Cn 𝑗 ) , 𝑔 ∈ ( II Cn 𝑗 ) ↦ { ℎ ∈ ( 𝑓 ( II Htpy 𝑗 ) 𝑔 ) ∣ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 ) = ( 𝑓 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝑓 ‘ 1 ) ) } ) ) |
10 |
|
ovex |
⊢ ( II Cn 𝐽 ) ∈ V |
11 |
10 10
|
mpoex |
⊢ ( 𝑓 ∈ ( II Cn 𝐽 ) , 𝑔 ∈ ( II Cn 𝐽 ) ↦ { ℎ ∈ ( 𝑓 ( II Htpy 𝐽 ) 𝑔 ) ∣ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 ) = ( 𝑓 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝑓 ‘ 1 ) ) } ) ∈ V |
12 |
8 9 11
|
fvmpt |
⊢ ( 𝐽 ∈ Top → ( PHtpy ‘ 𝐽 ) = ( 𝑓 ∈ ( II Cn 𝐽 ) , 𝑔 ∈ ( II Cn 𝐽 ) ↦ { ℎ ∈ ( 𝑓 ( II Htpy 𝐽 ) 𝑔 ) ∣ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 ) = ( 𝑓 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝑓 ‘ 1 ) ) } ) ) |
13 |
1 3 12
|
3syl |
⊢ ( 𝜑 → ( PHtpy ‘ 𝐽 ) = ( 𝑓 ∈ ( II Cn 𝐽 ) , 𝑔 ∈ ( II Cn 𝐽 ) ↦ { ℎ ∈ ( 𝑓 ( II Htpy 𝐽 ) 𝑔 ) ∣ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 ) = ( 𝑓 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝑓 ‘ 1 ) ) } ) ) |
14 |
|
oveq12 |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑓 ( II Htpy 𝐽 ) 𝑔 ) = ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ) |
15 |
|
simpl |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → 𝑓 = 𝐹 ) |
16 |
15
|
fveq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |
17 |
16
|
eqeq2d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 0 ℎ 𝑠 ) = ( 𝑓 ‘ 0 ) ↔ ( 0 ℎ 𝑠 ) = ( 𝐹 ‘ 0 ) ) ) |
18 |
15
|
fveq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑓 ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
19 |
18
|
eqeq2d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 1 ℎ 𝑠 ) = ( 𝑓 ‘ 1 ) ↔ ( 1 ℎ 𝑠 ) = ( 𝐹 ‘ 1 ) ) ) |
20 |
17 19
|
anbi12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( ( 0 ℎ 𝑠 ) = ( 𝑓 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝑓 ‘ 1 ) ) ↔ ( ( 0 ℎ 𝑠 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝐹 ‘ 1 ) ) ) ) |
21 |
20
|
ralbidv |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 ) = ( 𝑓 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝑓 ‘ 1 ) ) ↔ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝐹 ‘ 1 ) ) ) ) |
22 |
14 21
|
rabeqbidv |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → { ℎ ∈ ( 𝑓 ( II Htpy 𝐽 ) 𝑔 ) ∣ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 ) = ( 𝑓 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝑓 ‘ 1 ) ) } = { ℎ ∈ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ∣ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝐹 ‘ 1 ) ) } ) |
23 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) ) → { ℎ ∈ ( 𝑓 ( II Htpy 𝐽 ) 𝑔 ) ∣ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 ) = ( 𝑓 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝑓 ‘ 1 ) ) } = { ℎ ∈ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ∣ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝐹 ‘ 1 ) ) } ) |
24 |
|
ovex |
⊢ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ∈ V |
25 |
24
|
rabex |
⊢ { ℎ ∈ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ∣ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝐹 ‘ 1 ) ) } ∈ V |
26 |
25
|
a1i |
⊢ ( 𝜑 → { ℎ ∈ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ∣ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝐹 ‘ 1 ) ) } ∈ V ) |
27 |
13 23 1 2 26
|
ovmpod |
⊢ ( 𝜑 → ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) = { ℎ ∈ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ∣ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝐹 ‘ 1 ) ) } ) |
28 |
27
|
eleq2d |
⊢ ( 𝜑 → ( 𝐻 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ↔ 𝐻 ∈ { ℎ ∈ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ∣ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝐹 ‘ 1 ) ) } ) ) |
29 |
|
oveq |
⊢ ( ℎ = 𝐻 → ( 0 ℎ 𝑠 ) = ( 0 𝐻 𝑠 ) ) |
30 |
29
|
eqeq1d |
⊢ ( ℎ = 𝐻 → ( ( 0 ℎ 𝑠 ) = ( 𝐹 ‘ 0 ) ↔ ( 0 𝐻 𝑠 ) = ( 𝐹 ‘ 0 ) ) ) |
31 |
|
oveq |
⊢ ( ℎ = 𝐻 → ( 1 ℎ 𝑠 ) = ( 1 𝐻 𝑠 ) ) |
32 |
31
|
eqeq1d |
⊢ ( ℎ = 𝐻 → ( ( 1 ℎ 𝑠 ) = ( 𝐹 ‘ 1 ) ↔ ( 1 𝐻 𝑠 ) = ( 𝐹 ‘ 1 ) ) ) |
33 |
30 32
|
anbi12d |
⊢ ( ℎ = 𝐻 → ( ( ( 0 ℎ 𝑠 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝐹 ‘ 1 ) ) ↔ ( ( 0 𝐻 𝑠 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 𝐻 𝑠 ) = ( 𝐹 ‘ 1 ) ) ) ) |
34 |
33
|
ralbidv |
⊢ ( ℎ = 𝐻 → ( ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝐹 ‘ 1 ) ) ↔ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 𝐻 𝑠 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 𝐻 𝑠 ) = ( 𝐹 ‘ 1 ) ) ) ) |
35 |
34
|
elrab |
⊢ ( 𝐻 ∈ { ℎ ∈ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ∣ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝐹 ‘ 1 ) ) } ↔ ( 𝐻 ∈ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ∧ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 𝐻 𝑠 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 𝐻 𝑠 ) = ( 𝐹 ‘ 1 ) ) ) ) |
36 |
28 35
|
bitrdi |
⊢ ( 𝜑 → ( 𝐻 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ↔ ( 𝐻 ∈ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ∧ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 𝐻 𝑠 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 𝐻 𝑠 ) = ( 𝐹 ‘ 1 ) ) ) ) ) |