| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isphtpy.2 | ⊢ ( 𝜑  →  𝐹  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 2 |  | isphtpy.3 | ⊢ ( 𝜑  →  𝐺  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 3 |  | cntop2 | ⊢ ( 𝐹  ∈  ( II  Cn  𝐽 )  →  𝐽  ∈  Top ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑗  =  𝐽  →  ( II  Cn  𝑗 )  =  ( II  Cn  𝐽 ) ) | 
						
							| 5 |  | oveq2 | ⊢ ( 𝑗  =  𝐽  →  ( II  Htpy  𝑗 )  =  ( II  Htpy  𝐽 ) ) | 
						
							| 6 | 5 | oveqd | ⊢ ( 𝑗  =  𝐽  →  ( 𝑓 ( II  Htpy  𝑗 ) 𝑔 )  =  ( 𝑓 ( II  Htpy  𝐽 ) 𝑔 ) ) | 
						
							| 7 | 6 | rabeqdv | ⊢ ( 𝑗  =  𝐽  →  { ℎ  ∈  ( 𝑓 ( II  Htpy  𝑗 ) 𝑔 )  ∣  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 )  =  ( 𝑓 ‘ 0 )  ∧  ( 1 ℎ 𝑠 )  =  ( 𝑓 ‘ 1 ) ) }  =  { ℎ  ∈  ( 𝑓 ( II  Htpy  𝐽 ) 𝑔 )  ∣  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 )  =  ( 𝑓 ‘ 0 )  ∧  ( 1 ℎ 𝑠 )  =  ( 𝑓 ‘ 1 ) ) } ) | 
						
							| 8 | 4 4 7 | mpoeq123dv | ⊢ ( 𝑗  =  𝐽  →  ( 𝑓  ∈  ( II  Cn  𝑗 ) ,  𝑔  ∈  ( II  Cn  𝑗 )  ↦  { ℎ  ∈  ( 𝑓 ( II  Htpy  𝑗 ) 𝑔 )  ∣  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 )  =  ( 𝑓 ‘ 0 )  ∧  ( 1 ℎ 𝑠 )  =  ( 𝑓 ‘ 1 ) ) } )  =  ( 𝑓  ∈  ( II  Cn  𝐽 ) ,  𝑔  ∈  ( II  Cn  𝐽 )  ↦  { ℎ  ∈  ( 𝑓 ( II  Htpy  𝐽 ) 𝑔 )  ∣  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 )  =  ( 𝑓 ‘ 0 )  ∧  ( 1 ℎ 𝑠 )  =  ( 𝑓 ‘ 1 ) ) } ) ) | 
						
							| 9 |  | df-phtpy | ⊢ PHtpy  =  ( 𝑗  ∈  Top  ↦  ( 𝑓  ∈  ( II  Cn  𝑗 ) ,  𝑔  ∈  ( II  Cn  𝑗 )  ↦  { ℎ  ∈  ( 𝑓 ( II  Htpy  𝑗 ) 𝑔 )  ∣  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 )  =  ( 𝑓 ‘ 0 )  ∧  ( 1 ℎ 𝑠 )  =  ( 𝑓 ‘ 1 ) ) } ) ) | 
						
							| 10 |  | ovex | ⊢ ( II  Cn  𝐽 )  ∈  V | 
						
							| 11 | 10 10 | mpoex | ⊢ ( 𝑓  ∈  ( II  Cn  𝐽 ) ,  𝑔  ∈  ( II  Cn  𝐽 )  ↦  { ℎ  ∈  ( 𝑓 ( II  Htpy  𝐽 ) 𝑔 )  ∣  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 )  =  ( 𝑓 ‘ 0 )  ∧  ( 1 ℎ 𝑠 )  =  ( 𝑓 ‘ 1 ) ) } )  ∈  V | 
						
							| 12 | 8 9 11 | fvmpt | ⊢ ( 𝐽  ∈  Top  →  ( PHtpy ‘ 𝐽 )  =  ( 𝑓  ∈  ( II  Cn  𝐽 ) ,  𝑔  ∈  ( II  Cn  𝐽 )  ↦  { ℎ  ∈  ( 𝑓 ( II  Htpy  𝐽 ) 𝑔 )  ∣  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 )  =  ( 𝑓 ‘ 0 )  ∧  ( 1 ℎ 𝑠 )  =  ( 𝑓 ‘ 1 ) ) } ) ) | 
						
							| 13 | 1 3 12 | 3syl | ⊢ ( 𝜑  →  ( PHtpy ‘ 𝐽 )  =  ( 𝑓  ∈  ( II  Cn  𝐽 ) ,  𝑔  ∈  ( II  Cn  𝐽 )  ↦  { ℎ  ∈  ( 𝑓 ( II  Htpy  𝐽 ) 𝑔 )  ∣  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 )  =  ( 𝑓 ‘ 0 )  ∧  ( 1 ℎ 𝑠 )  =  ( 𝑓 ‘ 1 ) ) } ) ) | 
						
							| 14 |  | oveq12 | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 )  →  ( 𝑓 ( II  Htpy  𝐽 ) 𝑔 )  =  ( 𝐹 ( II  Htpy  𝐽 ) 𝐺 ) ) | 
						
							| 15 |  | simpl | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 )  →  𝑓  =  𝐹 ) | 
						
							| 16 | 15 | fveq1d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 )  →  ( 𝑓 ‘ 0 )  =  ( 𝐹 ‘ 0 ) ) | 
						
							| 17 | 16 | eqeq2d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 )  →  ( ( 0 ℎ 𝑠 )  =  ( 𝑓 ‘ 0 )  ↔  ( 0 ℎ 𝑠 )  =  ( 𝐹 ‘ 0 ) ) ) | 
						
							| 18 | 15 | fveq1d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 )  →  ( 𝑓 ‘ 1 )  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 19 | 18 | eqeq2d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 )  →  ( ( 1 ℎ 𝑠 )  =  ( 𝑓 ‘ 1 )  ↔  ( 1 ℎ 𝑠 )  =  ( 𝐹 ‘ 1 ) ) ) | 
						
							| 20 | 17 19 | anbi12d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 )  →  ( ( ( 0 ℎ 𝑠 )  =  ( 𝑓 ‘ 0 )  ∧  ( 1 ℎ 𝑠 )  =  ( 𝑓 ‘ 1 ) )  ↔  ( ( 0 ℎ 𝑠 )  =  ( 𝐹 ‘ 0 )  ∧  ( 1 ℎ 𝑠 )  =  ( 𝐹 ‘ 1 ) ) ) ) | 
						
							| 21 | 20 | ralbidv | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 )  →  ( ∀ 𝑠  ∈  ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 )  =  ( 𝑓 ‘ 0 )  ∧  ( 1 ℎ 𝑠 )  =  ( 𝑓 ‘ 1 ) )  ↔  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 )  =  ( 𝐹 ‘ 0 )  ∧  ( 1 ℎ 𝑠 )  =  ( 𝐹 ‘ 1 ) ) ) ) | 
						
							| 22 | 14 21 | rabeqbidv | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 )  →  { ℎ  ∈  ( 𝑓 ( II  Htpy  𝐽 ) 𝑔 )  ∣  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 )  =  ( 𝑓 ‘ 0 )  ∧  ( 1 ℎ 𝑠 )  =  ( 𝑓 ‘ 1 ) ) }  =  { ℎ  ∈  ( 𝐹 ( II  Htpy  𝐽 ) 𝐺 )  ∣  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 )  =  ( 𝐹 ‘ 0 )  ∧  ( 1 ℎ 𝑠 )  =  ( 𝐹 ‘ 1 ) ) } ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 ) )  →  { ℎ  ∈  ( 𝑓 ( II  Htpy  𝐽 ) 𝑔 )  ∣  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 )  =  ( 𝑓 ‘ 0 )  ∧  ( 1 ℎ 𝑠 )  =  ( 𝑓 ‘ 1 ) ) }  =  { ℎ  ∈  ( 𝐹 ( II  Htpy  𝐽 ) 𝐺 )  ∣  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 )  =  ( 𝐹 ‘ 0 )  ∧  ( 1 ℎ 𝑠 )  =  ( 𝐹 ‘ 1 ) ) } ) | 
						
							| 24 |  | ovex | ⊢ ( 𝐹 ( II  Htpy  𝐽 ) 𝐺 )  ∈  V | 
						
							| 25 | 24 | rabex | ⊢ { ℎ  ∈  ( 𝐹 ( II  Htpy  𝐽 ) 𝐺 )  ∣  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 )  =  ( 𝐹 ‘ 0 )  ∧  ( 1 ℎ 𝑠 )  =  ( 𝐹 ‘ 1 ) ) }  ∈  V | 
						
							| 26 | 25 | a1i | ⊢ ( 𝜑  →  { ℎ  ∈  ( 𝐹 ( II  Htpy  𝐽 ) 𝐺 )  ∣  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 )  =  ( 𝐹 ‘ 0 )  ∧  ( 1 ℎ 𝑠 )  =  ( 𝐹 ‘ 1 ) ) }  ∈  V ) | 
						
							| 27 | 13 23 1 2 26 | ovmpod | ⊢ ( 𝜑  →  ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 )  =  { ℎ  ∈  ( 𝐹 ( II  Htpy  𝐽 ) 𝐺 )  ∣  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 )  =  ( 𝐹 ‘ 0 )  ∧  ( 1 ℎ 𝑠 )  =  ( 𝐹 ‘ 1 ) ) } ) | 
						
							| 28 | 27 | eleq2d | ⊢ ( 𝜑  →  ( 𝐻  ∈  ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 )  ↔  𝐻  ∈  { ℎ  ∈  ( 𝐹 ( II  Htpy  𝐽 ) 𝐺 )  ∣  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 )  =  ( 𝐹 ‘ 0 )  ∧  ( 1 ℎ 𝑠 )  =  ( 𝐹 ‘ 1 ) ) } ) ) | 
						
							| 29 |  | oveq | ⊢ ( ℎ  =  𝐻  →  ( 0 ℎ 𝑠 )  =  ( 0 𝐻 𝑠 ) ) | 
						
							| 30 | 29 | eqeq1d | ⊢ ( ℎ  =  𝐻  →  ( ( 0 ℎ 𝑠 )  =  ( 𝐹 ‘ 0 )  ↔  ( 0 𝐻 𝑠 )  =  ( 𝐹 ‘ 0 ) ) ) | 
						
							| 31 |  | oveq | ⊢ ( ℎ  =  𝐻  →  ( 1 ℎ 𝑠 )  =  ( 1 𝐻 𝑠 ) ) | 
						
							| 32 | 31 | eqeq1d | ⊢ ( ℎ  =  𝐻  →  ( ( 1 ℎ 𝑠 )  =  ( 𝐹 ‘ 1 )  ↔  ( 1 𝐻 𝑠 )  =  ( 𝐹 ‘ 1 ) ) ) | 
						
							| 33 | 30 32 | anbi12d | ⊢ ( ℎ  =  𝐻  →  ( ( ( 0 ℎ 𝑠 )  =  ( 𝐹 ‘ 0 )  ∧  ( 1 ℎ 𝑠 )  =  ( 𝐹 ‘ 1 ) )  ↔  ( ( 0 𝐻 𝑠 )  =  ( 𝐹 ‘ 0 )  ∧  ( 1 𝐻 𝑠 )  =  ( 𝐹 ‘ 1 ) ) ) ) | 
						
							| 34 | 33 | ralbidv | ⊢ ( ℎ  =  𝐻  →  ( ∀ 𝑠  ∈  ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 )  =  ( 𝐹 ‘ 0 )  ∧  ( 1 ℎ 𝑠 )  =  ( 𝐹 ‘ 1 ) )  ↔  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( ( 0 𝐻 𝑠 )  =  ( 𝐹 ‘ 0 )  ∧  ( 1 𝐻 𝑠 )  =  ( 𝐹 ‘ 1 ) ) ) ) | 
						
							| 35 | 34 | elrab | ⊢ ( 𝐻  ∈  { ℎ  ∈  ( 𝐹 ( II  Htpy  𝐽 ) 𝐺 )  ∣  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 )  =  ( 𝐹 ‘ 0 )  ∧  ( 1 ℎ 𝑠 )  =  ( 𝐹 ‘ 1 ) ) }  ↔  ( 𝐻  ∈  ( 𝐹 ( II  Htpy  𝐽 ) 𝐺 )  ∧  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( ( 0 𝐻 𝑠 )  =  ( 𝐹 ‘ 0 )  ∧  ( 1 𝐻 𝑠 )  =  ( 𝐹 ‘ 1 ) ) ) ) | 
						
							| 36 | 28 35 | bitrdi | ⊢ ( 𝜑  →  ( 𝐻  ∈  ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 )  ↔  ( 𝐻  ∈  ( 𝐹 ( II  Htpy  𝐽 ) 𝐺 )  ∧  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( ( 0 𝐻 𝑠 )  =  ( 𝐹 ‘ 0 )  ∧  ( 1 𝐻 𝑠 )  =  ( 𝐹 ‘ 1 ) ) ) ) ) |