Step |
Hyp |
Ref |
Expression |
1 |
|
isphtpy.2 |
|- ( ph -> F e. ( II Cn J ) ) |
2 |
|
isphtpy.3 |
|- ( ph -> G e. ( II Cn J ) ) |
3 |
|
cntop2 |
|- ( F e. ( II Cn J ) -> J e. Top ) |
4 |
|
oveq2 |
|- ( j = J -> ( II Cn j ) = ( II Cn J ) ) |
5 |
|
oveq2 |
|- ( j = J -> ( II Htpy j ) = ( II Htpy J ) ) |
6 |
5
|
oveqd |
|- ( j = J -> ( f ( II Htpy j ) g ) = ( f ( II Htpy J ) g ) ) |
7 |
6
|
rabeqdv |
|- ( j = J -> { h e. ( f ( II Htpy j ) g ) | A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( f ` 0 ) /\ ( 1 h s ) = ( f ` 1 ) ) } = { h e. ( f ( II Htpy J ) g ) | A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( f ` 0 ) /\ ( 1 h s ) = ( f ` 1 ) ) } ) |
8 |
4 4 7
|
mpoeq123dv |
|- ( j = J -> ( f e. ( II Cn j ) , g e. ( II Cn j ) |-> { h e. ( f ( II Htpy j ) g ) | A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( f ` 0 ) /\ ( 1 h s ) = ( f ` 1 ) ) } ) = ( f e. ( II Cn J ) , g e. ( II Cn J ) |-> { h e. ( f ( II Htpy J ) g ) | A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( f ` 0 ) /\ ( 1 h s ) = ( f ` 1 ) ) } ) ) |
9 |
|
df-phtpy |
|- PHtpy = ( j e. Top |-> ( f e. ( II Cn j ) , g e. ( II Cn j ) |-> { h e. ( f ( II Htpy j ) g ) | A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( f ` 0 ) /\ ( 1 h s ) = ( f ` 1 ) ) } ) ) |
10 |
|
ovex |
|- ( II Cn J ) e. _V |
11 |
10 10
|
mpoex |
|- ( f e. ( II Cn J ) , g e. ( II Cn J ) |-> { h e. ( f ( II Htpy J ) g ) | A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( f ` 0 ) /\ ( 1 h s ) = ( f ` 1 ) ) } ) e. _V |
12 |
8 9 11
|
fvmpt |
|- ( J e. Top -> ( PHtpy ` J ) = ( f e. ( II Cn J ) , g e. ( II Cn J ) |-> { h e. ( f ( II Htpy J ) g ) | A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( f ` 0 ) /\ ( 1 h s ) = ( f ` 1 ) ) } ) ) |
13 |
1 3 12
|
3syl |
|- ( ph -> ( PHtpy ` J ) = ( f e. ( II Cn J ) , g e. ( II Cn J ) |-> { h e. ( f ( II Htpy J ) g ) | A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( f ` 0 ) /\ ( 1 h s ) = ( f ` 1 ) ) } ) ) |
14 |
|
oveq12 |
|- ( ( f = F /\ g = G ) -> ( f ( II Htpy J ) g ) = ( F ( II Htpy J ) G ) ) |
15 |
|
simpl |
|- ( ( f = F /\ g = G ) -> f = F ) |
16 |
15
|
fveq1d |
|- ( ( f = F /\ g = G ) -> ( f ` 0 ) = ( F ` 0 ) ) |
17 |
16
|
eqeq2d |
|- ( ( f = F /\ g = G ) -> ( ( 0 h s ) = ( f ` 0 ) <-> ( 0 h s ) = ( F ` 0 ) ) ) |
18 |
15
|
fveq1d |
|- ( ( f = F /\ g = G ) -> ( f ` 1 ) = ( F ` 1 ) ) |
19 |
18
|
eqeq2d |
|- ( ( f = F /\ g = G ) -> ( ( 1 h s ) = ( f ` 1 ) <-> ( 1 h s ) = ( F ` 1 ) ) ) |
20 |
17 19
|
anbi12d |
|- ( ( f = F /\ g = G ) -> ( ( ( 0 h s ) = ( f ` 0 ) /\ ( 1 h s ) = ( f ` 1 ) ) <-> ( ( 0 h s ) = ( F ` 0 ) /\ ( 1 h s ) = ( F ` 1 ) ) ) ) |
21 |
20
|
ralbidv |
|- ( ( f = F /\ g = G ) -> ( A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( f ` 0 ) /\ ( 1 h s ) = ( f ` 1 ) ) <-> A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( F ` 0 ) /\ ( 1 h s ) = ( F ` 1 ) ) ) ) |
22 |
14 21
|
rabeqbidv |
|- ( ( f = F /\ g = G ) -> { h e. ( f ( II Htpy J ) g ) | A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( f ` 0 ) /\ ( 1 h s ) = ( f ` 1 ) ) } = { h e. ( F ( II Htpy J ) G ) | A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( F ` 0 ) /\ ( 1 h s ) = ( F ` 1 ) ) } ) |
23 |
22
|
adantl |
|- ( ( ph /\ ( f = F /\ g = G ) ) -> { h e. ( f ( II Htpy J ) g ) | A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( f ` 0 ) /\ ( 1 h s ) = ( f ` 1 ) ) } = { h e. ( F ( II Htpy J ) G ) | A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( F ` 0 ) /\ ( 1 h s ) = ( F ` 1 ) ) } ) |
24 |
|
ovex |
|- ( F ( II Htpy J ) G ) e. _V |
25 |
24
|
rabex |
|- { h e. ( F ( II Htpy J ) G ) | A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( F ` 0 ) /\ ( 1 h s ) = ( F ` 1 ) ) } e. _V |
26 |
25
|
a1i |
|- ( ph -> { h e. ( F ( II Htpy J ) G ) | A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( F ` 0 ) /\ ( 1 h s ) = ( F ` 1 ) ) } e. _V ) |
27 |
13 23 1 2 26
|
ovmpod |
|- ( ph -> ( F ( PHtpy ` J ) G ) = { h e. ( F ( II Htpy J ) G ) | A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( F ` 0 ) /\ ( 1 h s ) = ( F ` 1 ) ) } ) |
28 |
27
|
eleq2d |
|- ( ph -> ( H e. ( F ( PHtpy ` J ) G ) <-> H e. { h e. ( F ( II Htpy J ) G ) | A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( F ` 0 ) /\ ( 1 h s ) = ( F ` 1 ) ) } ) ) |
29 |
|
oveq |
|- ( h = H -> ( 0 h s ) = ( 0 H s ) ) |
30 |
29
|
eqeq1d |
|- ( h = H -> ( ( 0 h s ) = ( F ` 0 ) <-> ( 0 H s ) = ( F ` 0 ) ) ) |
31 |
|
oveq |
|- ( h = H -> ( 1 h s ) = ( 1 H s ) ) |
32 |
31
|
eqeq1d |
|- ( h = H -> ( ( 1 h s ) = ( F ` 1 ) <-> ( 1 H s ) = ( F ` 1 ) ) ) |
33 |
30 32
|
anbi12d |
|- ( h = H -> ( ( ( 0 h s ) = ( F ` 0 ) /\ ( 1 h s ) = ( F ` 1 ) ) <-> ( ( 0 H s ) = ( F ` 0 ) /\ ( 1 H s ) = ( F ` 1 ) ) ) ) |
34 |
33
|
ralbidv |
|- ( h = H -> ( A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( F ` 0 ) /\ ( 1 h s ) = ( F ` 1 ) ) <-> A. s e. ( 0 [,] 1 ) ( ( 0 H s ) = ( F ` 0 ) /\ ( 1 H s ) = ( F ` 1 ) ) ) ) |
35 |
34
|
elrab |
|- ( H e. { h e. ( F ( II Htpy J ) G ) | A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( F ` 0 ) /\ ( 1 h s ) = ( F ` 1 ) ) } <-> ( H e. ( F ( II Htpy J ) G ) /\ A. s e. ( 0 [,] 1 ) ( ( 0 H s ) = ( F ` 0 ) /\ ( 1 H s ) = ( F ` 1 ) ) ) ) |
36 |
28 35
|
bitrdi |
|- ( ph -> ( H e. ( F ( PHtpy ` J ) G ) <-> ( H e. ( F ( II Htpy J ) G ) /\ A. s e. ( 0 [,] 1 ) ( ( 0 H s ) = ( F ` 0 ) /\ ( 1 H s ) = ( F ` 1 ) ) ) ) ) |