Step |
Hyp |
Ref |
Expression |
1 |
|
isphtpy.2 |
|- ( ph -> F e. ( II Cn J ) ) |
2 |
|
isphtpy.3 |
|- ( ph -> G e. ( II Cn J ) ) |
3 |
1 2
|
isphtpy |
|- ( ph -> ( h e. ( F ( PHtpy ` J ) G ) <-> ( h e. ( F ( II Htpy J ) G ) /\ A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( F ` 0 ) /\ ( 1 h s ) = ( F ` 1 ) ) ) ) ) |
4 |
|
simpl |
|- ( ( h e. ( F ( II Htpy J ) G ) /\ A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( F ` 0 ) /\ ( 1 h s ) = ( F ` 1 ) ) ) -> h e. ( F ( II Htpy J ) G ) ) |
5 |
3 4
|
syl6bi |
|- ( ph -> ( h e. ( F ( PHtpy ` J ) G ) -> h e. ( F ( II Htpy J ) G ) ) ) |
6 |
5
|
ssrdv |
|- ( ph -> ( F ( PHtpy ` J ) G ) C_ ( F ( II Htpy J ) G ) ) |