Description: A path homotopy is a continuous function. (Contributed by Mario Carneiro, 23-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isphtpy.2 | |- ( ph -> F e. ( II Cn J ) ) |
|
isphtpy.3 | |- ( ph -> G e. ( II Cn J ) ) |
||
Assertion | phtpycn | |- ( ph -> ( F ( PHtpy ` J ) G ) C_ ( ( II tX II ) Cn J ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isphtpy.2 | |- ( ph -> F e. ( II Cn J ) ) |
|
2 | isphtpy.3 | |- ( ph -> G e. ( II Cn J ) ) |
|
3 | 1 2 | phtpyhtpy | |- ( ph -> ( F ( PHtpy ` J ) G ) C_ ( F ( II Htpy J ) G ) ) |
4 | iitopon | |- II e. ( TopOn ` ( 0 [,] 1 ) ) |
|
5 | 4 | a1i | |- ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) |
6 | 5 1 2 | htpycn | |- ( ph -> ( F ( II Htpy J ) G ) C_ ( ( II tX II ) Cn J ) ) |
7 | 3 6 | sstrd | |- ( ph -> ( F ( PHtpy ` J ) G ) C_ ( ( II tX II ) Cn J ) ) |