Metamath Proof Explorer


Theorem phtpycn

Description: A path homotopy is a continuous function. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses isphtpy.2
|- ( ph -> F e. ( II Cn J ) )
isphtpy.3
|- ( ph -> G e. ( II Cn J ) )
Assertion phtpycn
|- ( ph -> ( F ( PHtpy ` J ) G ) C_ ( ( II tX II ) Cn J ) )

Proof

Step Hyp Ref Expression
1 isphtpy.2
 |-  ( ph -> F e. ( II Cn J ) )
2 isphtpy.3
 |-  ( ph -> G e. ( II Cn J ) )
3 1 2 phtpyhtpy
 |-  ( ph -> ( F ( PHtpy ` J ) G ) C_ ( F ( II Htpy J ) G ) )
4 iitopon
 |-  II e. ( TopOn ` ( 0 [,] 1 ) )
5 4 a1i
 |-  ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) )
6 5 1 2 htpycn
 |-  ( ph -> ( F ( II Htpy J ) G ) C_ ( ( II tX II ) Cn J ) )
7 3 6 sstrd
 |-  ( ph -> ( F ( PHtpy ` J ) G ) C_ ( ( II tX II ) Cn J ) )