Step |
Hyp |
Ref |
Expression |
1 |
|
isphtpy.2 |
|- ( ph -> F e. ( II Cn J ) ) |
2 |
|
isphtpy.3 |
|- ( ph -> G e. ( II Cn J ) ) |
3 |
|
phtpyi.1 |
|- ( ph -> H e. ( F ( PHtpy ` J ) G ) ) |
4 |
1 2
|
isphtpy |
|- ( ph -> ( H e. ( F ( PHtpy ` J ) G ) <-> ( H e. ( F ( II Htpy J ) G ) /\ A. s e. ( 0 [,] 1 ) ( ( 0 H s ) = ( F ` 0 ) /\ ( 1 H s ) = ( F ` 1 ) ) ) ) ) |
5 |
3 4
|
mpbid |
|- ( ph -> ( H e. ( F ( II Htpy J ) G ) /\ A. s e. ( 0 [,] 1 ) ( ( 0 H s ) = ( F ` 0 ) /\ ( 1 H s ) = ( F ` 1 ) ) ) ) |
6 |
5
|
simprd |
|- ( ph -> A. s e. ( 0 [,] 1 ) ( ( 0 H s ) = ( F ` 0 ) /\ ( 1 H s ) = ( F ` 1 ) ) ) |
7 |
|
oveq2 |
|- ( s = A -> ( 0 H s ) = ( 0 H A ) ) |
8 |
7
|
eqeq1d |
|- ( s = A -> ( ( 0 H s ) = ( F ` 0 ) <-> ( 0 H A ) = ( F ` 0 ) ) ) |
9 |
|
oveq2 |
|- ( s = A -> ( 1 H s ) = ( 1 H A ) ) |
10 |
9
|
eqeq1d |
|- ( s = A -> ( ( 1 H s ) = ( F ` 1 ) <-> ( 1 H A ) = ( F ` 1 ) ) ) |
11 |
8 10
|
anbi12d |
|- ( s = A -> ( ( ( 0 H s ) = ( F ` 0 ) /\ ( 1 H s ) = ( F ` 1 ) ) <-> ( ( 0 H A ) = ( F ` 0 ) /\ ( 1 H A ) = ( F ` 1 ) ) ) ) |
12 |
11
|
rspccva |
|- ( ( A. s e. ( 0 [,] 1 ) ( ( 0 H s ) = ( F ` 0 ) /\ ( 1 H s ) = ( F ` 1 ) ) /\ A e. ( 0 [,] 1 ) ) -> ( ( 0 H A ) = ( F ` 0 ) /\ ( 1 H A ) = ( F ` 1 ) ) ) |
13 |
6 12
|
sylan |
|- ( ( ph /\ A e. ( 0 [,] 1 ) ) -> ( ( 0 H A ) = ( F ` 0 ) /\ ( 1 H A ) = ( F ` 1 ) ) ) |