Metamath Proof Explorer


Theorem phtpyi

Description: Membership in the class of path homotopies between two continuous functions. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses isphtpy.2
|- ( ph -> F e. ( II Cn J ) )
isphtpy.3
|- ( ph -> G e. ( II Cn J ) )
phtpyi.1
|- ( ph -> H e. ( F ( PHtpy ` J ) G ) )
Assertion phtpyi
|- ( ( ph /\ A e. ( 0 [,] 1 ) ) -> ( ( 0 H A ) = ( F ` 0 ) /\ ( 1 H A ) = ( F ` 1 ) ) )

Proof

Step Hyp Ref Expression
1 isphtpy.2
 |-  ( ph -> F e. ( II Cn J ) )
2 isphtpy.3
 |-  ( ph -> G e. ( II Cn J ) )
3 phtpyi.1
 |-  ( ph -> H e. ( F ( PHtpy ` J ) G ) )
4 1 2 isphtpy
 |-  ( ph -> ( H e. ( F ( PHtpy ` J ) G ) <-> ( H e. ( F ( II Htpy J ) G ) /\ A. s e. ( 0 [,] 1 ) ( ( 0 H s ) = ( F ` 0 ) /\ ( 1 H s ) = ( F ` 1 ) ) ) ) )
5 3 4 mpbid
 |-  ( ph -> ( H e. ( F ( II Htpy J ) G ) /\ A. s e. ( 0 [,] 1 ) ( ( 0 H s ) = ( F ` 0 ) /\ ( 1 H s ) = ( F ` 1 ) ) ) )
6 5 simprd
 |-  ( ph -> A. s e. ( 0 [,] 1 ) ( ( 0 H s ) = ( F ` 0 ) /\ ( 1 H s ) = ( F ` 1 ) ) )
7 oveq2
 |-  ( s = A -> ( 0 H s ) = ( 0 H A ) )
8 7 eqeq1d
 |-  ( s = A -> ( ( 0 H s ) = ( F ` 0 ) <-> ( 0 H A ) = ( F ` 0 ) ) )
9 oveq2
 |-  ( s = A -> ( 1 H s ) = ( 1 H A ) )
10 9 eqeq1d
 |-  ( s = A -> ( ( 1 H s ) = ( F ` 1 ) <-> ( 1 H A ) = ( F ` 1 ) ) )
11 8 10 anbi12d
 |-  ( s = A -> ( ( ( 0 H s ) = ( F ` 0 ) /\ ( 1 H s ) = ( F ` 1 ) ) <-> ( ( 0 H A ) = ( F ` 0 ) /\ ( 1 H A ) = ( F ` 1 ) ) ) )
12 11 rspccva
 |-  ( ( A. s e. ( 0 [,] 1 ) ( ( 0 H s ) = ( F ` 0 ) /\ ( 1 H s ) = ( F ` 1 ) ) /\ A e. ( 0 [,] 1 ) ) -> ( ( 0 H A ) = ( F ` 0 ) /\ ( 1 H A ) = ( F ` 1 ) ) )
13 6 12 sylan
 |-  ( ( ph /\ A e. ( 0 [,] 1 ) ) -> ( ( 0 H A ) = ( F ` 0 ) /\ ( 1 H A ) = ( F ` 1 ) ) )