| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isphtpy.2 |
|- ( ph -> F e. ( II Cn J ) ) |
| 2 |
|
isphtpy.3 |
|- ( ph -> G e. ( II Cn J ) ) |
| 3 |
|
phtpyi.1 |
|- ( ph -> H e. ( F ( PHtpy ` J ) G ) ) |
| 4 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
| 5 |
1 2 3
|
phtpyi |
|- ( ( ph /\ 1 e. ( 0 [,] 1 ) ) -> ( ( 0 H 1 ) = ( F ` 0 ) /\ ( 1 H 1 ) = ( F ` 1 ) ) ) |
| 6 |
4 5
|
mpan2 |
|- ( ph -> ( ( 0 H 1 ) = ( F ` 0 ) /\ ( 1 H 1 ) = ( F ` 1 ) ) ) |
| 7 |
6
|
simpld |
|- ( ph -> ( 0 H 1 ) = ( F ` 0 ) ) |
| 8 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
| 9 |
|
iitopon |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |
| 10 |
9
|
a1i |
|- ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) |
| 11 |
1 2
|
phtpyhtpy |
|- ( ph -> ( F ( PHtpy ` J ) G ) C_ ( F ( II Htpy J ) G ) ) |
| 12 |
11 3
|
sseldd |
|- ( ph -> H e. ( F ( II Htpy J ) G ) ) |
| 13 |
10 1 2 12
|
htpyi |
|- ( ( ph /\ 0 e. ( 0 [,] 1 ) ) -> ( ( 0 H 0 ) = ( F ` 0 ) /\ ( 0 H 1 ) = ( G ` 0 ) ) ) |
| 14 |
8 13
|
mpan2 |
|- ( ph -> ( ( 0 H 0 ) = ( F ` 0 ) /\ ( 0 H 1 ) = ( G ` 0 ) ) ) |
| 15 |
14
|
simprd |
|- ( ph -> ( 0 H 1 ) = ( G ` 0 ) ) |
| 16 |
7 15
|
eqtr3d |
|- ( ph -> ( F ` 0 ) = ( G ` 0 ) ) |
| 17 |
6
|
simprd |
|- ( ph -> ( 1 H 1 ) = ( F ` 1 ) ) |
| 18 |
10 1 2 12
|
htpyi |
|- ( ( ph /\ 1 e. ( 0 [,] 1 ) ) -> ( ( 1 H 0 ) = ( F ` 1 ) /\ ( 1 H 1 ) = ( G ` 1 ) ) ) |
| 19 |
4 18
|
mpan2 |
|- ( ph -> ( ( 1 H 0 ) = ( F ` 1 ) /\ ( 1 H 1 ) = ( G ` 1 ) ) ) |
| 20 |
19
|
simprd |
|- ( ph -> ( 1 H 1 ) = ( G ` 1 ) ) |
| 21 |
17 20
|
eqtr3d |
|- ( ph -> ( F ` 1 ) = ( G ` 1 ) ) |
| 22 |
16 21
|
jca |
|- ( ph -> ( ( F ` 0 ) = ( G ` 0 ) /\ ( F ` 1 ) = ( G ` 1 ) ) ) |