Metamath Proof Explorer


Theorem isphtpyd

Description: Deduction for membership in the class of path homotopies. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses isphtpy.2
|- ( ph -> F e. ( II Cn J ) )
isphtpy.3
|- ( ph -> G e. ( II Cn J ) )
isphtpyd.1
|- ( ph -> H e. ( F ( II Htpy J ) G ) )
isphtpyd.2
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 H s ) = ( F ` 0 ) )
isphtpyd.3
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 H s ) = ( F ` 1 ) )
Assertion isphtpyd
|- ( ph -> H e. ( F ( PHtpy ` J ) G ) )

Proof

Step Hyp Ref Expression
1 isphtpy.2
 |-  ( ph -> F e. ( II Cn J ) )
2 isphtpy.3
 |-  ( ph -> G e. ( II Cn J ) )
3 isphtpyd.1
 |-  ( ph -> H e. ( F ( II Htpy J ) G ) )
4 isphtpyd.2
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 H s ) = ( F ` 0 ) )
5 isphtpyd.3
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 H s ) = ( F ` 1 ) )
6 4 5 jca
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 0 H s ) = ( F ` 0 ) /\ ( 1 H s ) = ( F ` 1 ) ) )
7 6 ralrimiva
 |-  ( ph -> A. s e. ( 0 [,] 1 ) ( ( 0 H s ) = ( F ` 0 ) /\ ( 1 H s ) = ( F ` 1 ) ) )
8 1 2 isphtpy
 |-  ( ph -> ( H e. ( F ( PHtpy ` J ) G ) <-> ( H e. ( F ( II Htpy J ) G ) /\ A. s e. ( 0 [,] 1 ) ( ( 0 H s ) = ( F ` 0 ) /\ ( 1 H s ) = ( F ` 1 ) ) ) ) )
9 3 7 8 mpbir2and
 |-  ( ph -> H e. ( F ( PHtpy ` J ) G ) )