Step |
Hyp |
Ref |
Expression |
1 |
|
isphtpy.2 |
|- ( ph -> F e. ( II Cn J ) ) |
2 |
|
isphtpy.3 |
|- ( ph -> G e. ( II Cn J ) ) |
3 |
|
isphtpyd.1 |
|- ( ph -> H e. ( F ( II Htpy J ) G ) ) |
4 |
|
isphtpyd.2 |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 H s ) = ( F ` 0 ) ) |
5 |
|
isphtpyd.3 |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 H s ) = ( F ` 1 ) ) |
6 |
4 5
|
jca |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 0 H s ) = ( F ` 0 ) /\ ( 1 H s ) = ( F ` 1 ) ) ) |
7 |
6
|
ralrimiva |
|- ( ph -> A. s e. ( 0 [,] 1 ) ( ( 0 H s ) = ( F ` 0 ) /\ ( 1 H s ) = ( F ` 1 ) ) ) |
8 |
1 2
|
isphtpy |
|- ( ph -> ( H e. ( F ( PHtpy ` J ) G ) <-> ( H e. ( F ( II Htpy J ) G ) /\ A. s e. ( 0 [,] 1 ) ( ( 0 H s ) = ( F ` 0 ) /\ ( 1 H s ) = ( F ` 1 ) ) ) ) ) |
9 |
3 7 8
|
mpbir2and |
|- ( ph -> H e. ( F ( PHtpy ` J ) G ) ) |