Metamath Proof Explorer


Theorem isphtpy2d

Description: Deduction for membership in the class of path homotopies. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses isphtpy.2
|- ( ph -> F e. ( II Cn J ) )
isphtpy.3
|- ( ph -> G e. ( II Cn J ) )
isphtpy2d.1
|- ( ph -> H e. ( ( II tX II ) Cn J ) )
isphtpy2d.2
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s H 0 ) = ( F ` s ) )
isphtpy2d.3
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s H 1 ) = ( G ` s ) )
isphtpy2d.4
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 H s ) = ( F ` 0 ) )
isphtpy2d.5
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 H s ) = ( F ` 1 ) )
Assertion isphtpy2d
|- ( ph -> H e. ( F ( PHtpy ` J ) G ) )

Proof

Step Hyp Ref Expression
1 isphtpy.2
 |-  ( ph -> F e. ( II Cn J ) )
2 isphtpy.3
 |-  ( ph -> G e. ( II Cn J ) )
3 isphtpy2d.1
 |-  ( ph -> H e. ( ( II tX II ) Cn J ) )
4 isphtpy2d.2
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s H 0 ) = ( F ` s ) )
5 isphtpy2d.3
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s H 1 ) = ( G ` s ) )
6 isphtpy2d.4
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 H s ) = ( F ` 0 ) )
7 isphtpy2d.5
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 H s ) = ( F ` 1 ) )
8 iitopon
 |-  II e. ( TopOn ` ( 0 [,] 1 ) )
9 8 a1i
 |-  ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) )
10 9 1 2 3 4 5 ishtpyd
 |-  ( ph -> H e. ( F ( II Htpy J ) G ) )
11 1 2 10 6 7 isphtpyd
 |-  ( ph -> H e. ( F ( PHtpy ` J ) G ) )