Description: Deduction for membership in the class of path homotopies. (Contributed by Mario Carneiro, 23-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isphtpy.2 | |- ( ph -> F e. ( II Cn J ) ) |
|
isphtpy.3 | |- ( ph -> G e. ( II Cn J ) ) |
||
isphtpy2d.1 | |- ( ph -> H e. ( ( II tX II ) Cn J ) ) |
||
isphtpy2d.2 | |- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s H 0 ) = ( F ` s ) ) |
||
isphtpy2d.3 | |- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s H 1 ) = ( G ` s ) ) |
||
isphtpy2d.4 | |- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 H s ) = ( F ` 0 ) ) |
||
isphtpy2d.5 | |- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 H s ) = ( F ` 1 ) ) |
||
Assertion | isphtpy2d | |- ( ph -> H e. ( F ( PHtpy ` J ) G ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isphtpy.2 | |- ( ph -> F e. ( II Cn J ) ) |
|
2 | isphtpy.3 | |- ( ph -> G e. ( II Cn J ) ) |
|
3 | isphtpy2d.1 | |- ( ph -> H e. ( ( II tX II ) Cn J ) ) |
|
4 | isphtpy2d.2 | |- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s H 0 ) = ( F ` s ) ) |
|
5 | isphtpy2d.3 | |- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s H 1 ) = ( G ` s ) ) |
|
6 | isphtpy2d.4 | |- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 H s ) = ( F ` 0 ) ) |
|
7 | isphtpy2d.5 | |- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 H s ) = ( F ` 1 ) ) |
|
8 | iitopon | |- II e. ( TopOn ` ( 0 [,] 1 ) ) |
|
9 | 8 | a1i | |- ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) |
10 | 9 1 2 3 4 5 | ishtpyd | |- ( ph -> H e. ( F ( II Htpy J ) G ) ) |
11 | 1 2 10 6 7 | isphtpyd | |- ( ph -> H e. ( F ( PHtpy ` J ) G ) ) |