| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isphtpy.2 |  |-  ( ph -> F e. ( II Cn J ) ) | 
						
							| 2 |  | isphtpy.3 |  |-  ( ph -> G e. ( II Cn J ) ) | 
						
							| 3 |  | phtpycom.6 |  |-  K = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x H ( 1 - y ) ) ) | 
						
							| 4 |  | phtpycom.7 |  |-  ( ph -> H e. ( F ( PHtpy ` J ) G ) ) | 
						
							| 5 |  | iitopon |  |-  II e. ( TopOn ` ( 0 [,] 1 ) ) | 
						
							| 6 | 5 | a1i |  |-  ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) | 
						
							| 7 | 1 2 | phtpyhtpy |  |-  ( ph -> ( F ( PHtpy ` J ) G ) C_ ( F ( II Htpy J ) G ) ) | 
						
							| 8 | 7 4 | sseldd |  |-  ( ph -> H e. ( F ( II Htpy J ) G ) ) | 
						
							| 9 | 6 1 2 3 8 | htpycom |  |-  ( ph -> K e. ( G ( II Htpy J ) F ) ) | 
						
							| 10 |  | 0elunit |  |-  0 e. ( 0 [,] 1 ) | 
						
							| 11 |  | simpr |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> t e. ( 0 [,] 1 ) ) | 
						
							| 12 |  | oveq1 |  |-  ( x = 0 -> ( x H ( 1 - y ) ) = ( 0 H ( 1 - y ) ) ) | 
						
							| 13 |  | oveq2 |  |-  ( y = t -> ( 1 - y ) = ( 1 - t ) ) | 
						
							| 14 | 13 | oveq2d |  |-  ( y = t -> ( 0 H ( 1 - y ) ) = ( 0 H ( 1 - t ) ) ) | 
						
							| 15 |  | ovex |  |-  ( 0 H ( 1 - t ) ) e. _V | 
						
							| 16 | 12 14 3 15 | ovmpo |  |-  ( ( 0 e. ( 0 [,] 1 ) /\ t e. ( 0 [,] 1 ) ) -> ( 0 K t ) = ( 0 H ( 1 - t ) ) ) | 
						
							| 17 | 10 11 16 | sylancr |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( 0 K t ) = ( 0 H ( 1 - t ) ) ) | 
						
							| 18 |  | iirev |  |-  ( t e. ( 0 [,] 1 ) -> ( 1 - t ) e. ( 0 [,] 1 ) ) | 
						
							| 19 | 1 2 4 | phtpyi |  |-  ( ( ph /\ ( 1 - t ) e. ( 0 [,] 1 ) ) -> ( ( 0 H ( 1 - t ) ) = ( F ` 0 ) /\ ( 1 H ( 1 - t ) ) = ( F ` 1 ) ) ) | 
						
							| 20 | 18 19 | sylan2 |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( 0 H ( 1 - t ) ) = ( F ` 0 ) /\ ( 1 H ( 1 - t ) ) = ( F ` 1 ) ) ) | 
						
							| 21 | 20 | simpld |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( 0 H ( 1 - t ) ) = ( F ` 0 ) ) | 
						
							| 22 | 1 2 4 | phtpy01 |  |-  ( ph -> ( ( F ` 0 ) = ( G ` 0 ) /\ ( F ` 1 ) = ( G ` 1 ) ) ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( F ` 0 ) = ( G ` 0 ) /\ ( F ` 1 ) = ( G ` 1 ) ) ) | 
						
							| 24 | 23 | simpld |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( F ` 0 ) = ( G ` 0 ) ) | 
						
							| 25 | 17 21 24 | 3eqtrd |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( 0 K t ) = ( G ` 0 ) ) | 
						
							| 26 |  | 1elunit |  |-  1 e. ( 0 [,] 1 ) | 
						
							| 27 |  | oveq1 |  |-  ( x = 1 -> ( x H ( 1 - y ) ) = ( 1 H ( 1 - y ) ) ) | 
						
							| 28 | 13 | oveq2d |  |-  ( y = t -> ( 1 H ( 1 - y ) ) = ( 1 H ( 1 - t ) ) ) | 
						
							| 29 |  | ovex |  |-  ( 1 H ( 1 - t ) ) e. _V | 
						
							| 30 | 27 28 3 29 | ovmpo |  |-  ( ( 1 e. ( 0 [,] 1 ) /\ t e. ( 0 [,] 1 ) ) -> ( 1 K t ) = ( 1 H ( 1 - t ) ) ) | 
						
							| 31 | 26 11 30 | sylancr |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( 1 K t ) = ( 1 H ( 1 - t ) ) ) | 
						
							| 32 | 20 | simprd |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( 1 H ( 1 - t ) ) = ( F ` 1 ) ) | 
						
							| 33 | 23 | simprd |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( F ` 1 ) = ( G ` 1 ) ) | 
						
							| 34 | 31 32 33 | 3eqtrd |  |-  ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( 1 K t ) = ( G ` 1 ) ) | 
						
							| 35 | 2 1 9 25 34 | isphtpyd |  |-  ( ph -> K e. ( G ( PHtpy ` J ) F ) ) |