Step |
Hyp |
Ref |
Expression |
1 |
|
isphtpy.2 |
|- ( ph -> F e. ( II Cn J ) ) |
2 |
|
isphtpy.3 |
|- ( ph -> G e. ( II Cn J ) ) |
3 |
|
phtpycom.6 |
|- K = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x H ( 1 - y ) ) ) |
4 |
|
phtpycom.7 |
|- ( ph -> H e. ( F ( PHtpy ` J ) G ) ) |
5 |
|
iitopon |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |
6 |
5
|
a1i |
|- ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) |
7 |
1 2
|
phtpyhtpy |
|- ( ph -> ( F ( PHtpy ` J ) G ) C_ ( F ( II Htpy J ) G ) ) |
8 |
7 4
|
sseldd |
|- ( ph -> H e. ( F ( II Htpy J ) G ) ) |
9 |
6 1 2 3 8
|
htpycom |
|- ( ph -> K e. ( G ( II Htpy J ) F ) ) |
10 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
11 |
|
simpr |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> t e. ( 0 [,] 1 ) ) |
12 |
|
oveq1 |
|- ( x = 0 -> ( x H ( 1 - y ) ) = ( 0 H ( 1 - y ) ) ) |
13 |
|
oveq2 |
|- ( y = t -> ( 1 - y ) = ( 1 - t ) ) |
14 |
13
|
oveq2d |
|- ( y = t -> ( 0 H ( 1 - y ) ) = ( 0 H ( 1 - t ) ) ) |
15 |
|
ovex |
|- ( 0 H ( 1 - t ) ) e. _V |
16 |
12 14 3 15
|
ovmpo |
|- ( ( 0 e. ( 0 [,] 1 ) /\ t e. ( 0 [,] 1 ) ) -> ( 0 K t ) = ( 0 H ( 1 - t ) ) ) |
17 |
10 11 16
|
sylancr |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( 0 K t ) = ( 0 H ( 1 - t ) ) ) |
18 |
|
iirev |
|- ( t e. ( 0 [,] 1 ) -> ( 1 - t ) e. ( 0 [,] 1 ) ) |
19 |
1 2 4
|
phtpyi |
|- ( ( ph /\ ( 1 - t ) e. ( 0 [,] 1 ) ) -> ( ( 0 H ( 1 - t ) ) = ( F ` 0 ) /\ ( 1 H ( 1 - t ) ) = ( F ` 1 ) ) ) |
20 |
18 19
|
sylan2 |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( 0 H ( 1 - t ) ) = ( F ` 0 ) /\ ( 1 H ( 1 - t ) ) = ( F ` 1 ) ) ) |
21 |
20
|
simpld |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( 0 H ( 1 - t ) ) = ( F ` 0 ) ) |
22 |
1 2 4
|
phtpy01 |
|- ( ph -> ( ( F ` 0 ) = ( G ` 0 ) /\ ( F ` 1 ) = ( G ` 1 ) ) ) |
23 |
22
|
adantr |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( ( F ` 0 ) = ( G ` 0 ) /\ ( F ` 1 ) = ( G ` 1 ) ) ) |
24 |
23
|
simpld |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( F ` 0 ) = ( G ` 0 ) ) |
25 |
17 21 24
|
3eqtrd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( 0 K t ) = ( G ` 0 ) ) |
26 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
27 |
|
oveq1 |
|- ( x = 1 -> ( x H ( 1 - y ) ) = ( 1 H ( 1 - y ) ) ) |
28 |
13
|
oveq2d |
|- ( y = t -> ( 1 H ( 1 - y ) ) = ( 1 H ( 1 - t ) ) ) |
29 |
|
ovex |
|- ( 1 H ( 1 - t ) ) e. _V |
30 |
27 28 3 29
|
ovmpo |
|- ( ( 1 e. ( 0 [,] 1 ) /\ t e. ( 0 [,] 1 ) ) -> ( 1 K t ) = ( 1 H ( 1 - t ) ) ) |
31 |
26 11 30
|
sylancr |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( 1 K t ) = ( 1 H ( 1 - t ) ) ) |
32 |
20
|
simprd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( 1 H ( 1 - t ) ) = ( F ` 1 ) ) |
33 |
23
|
simprd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( F ` 1 ) = ( G ` 1 ) ) |
34 |
31 32 33
|
3eqtrd |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> ( 1 K t ) = ( G ` 1 ) ) |
35 |
2 1 9 25 34
|
isphtpyd |
|- ( ph -> K e. ( G ( PHtpy ` J ) F ) ) |