| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phtpyid.1 |  |-  G = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( F ` x ) ) | 
						
							| 2 |  | phtpyid.3 |  |-  ( ph -> F e. ( II Cn J ) ) | 
						
							| 3 |  | iitopon |  |-  II e. ( TopOn ` ( 0 [,] 1 ) ) | 
						
							| 4 | 3 | a1i |  |-  ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) | 
						
							| 5 | 1 4 2 | htpyid |  |-  ( ph -> G e. ( F ( II Htpy J ) F ) ) | 
						
							| 6 |  | 0elunit |  |-  0 e. ( 0 [,] 1 ) | 
						
							| 7 |  | fveq2 |  |-  ( x = 0 -> ( F ` x ) = ( F ` 0 ) ) | 
						
							| 8 |  | eqidd |  |-  ( y = s -> ( F ` 0 ) = ( F ` 0 ) ) | 
						
							| 9 |  | fvex |  |-  ( F ` 0 ) e. _V | 
						
							| 10 | 7 8 1 9 | ovmpo |  |-  ( ( 0 e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> ( 0 G s ) = ( F ` 0 ) ) | 
						
							| 11 | 6 10 | mpan |  |-  ( s e. ( 0 [,] 1 ) -> ( 0 G s ) = ( F ` 0 ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 G s ) = ( F ` 0 ) ) | 
						
							| 13 |  | 1elunit |  |-  1 e. ( 0 [,] 1 ) | 
						
							| 14 |  | fveq2 |  |-  ( x = 1 -> ( F ` x ) = ( F ` 1 ) ) | 
						
							| 15 |  | eqidd |  |-  ( y = s -> ( F ` 1 ) = ( F ` 1 ) ) | 
						
							| 16 |  | fvex |  |-  ( F ` 1 ) e. _V | 
						
							| 17 | 14 15 1 16 | ovmpo |  |-  ( ( 1 e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> ( 1 G s ) = ( F ` 1 ) ) | 
						
							| 18 | 13 17 | mpan |  |-  ( s e. ( 0 [,] 1 ) -> ( 1 G s ) = ( F ` 1 ) ) | 
						
							| 19 | 18 | adantl |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 G s ) = ( F ` 1 ) ) | 
						
							| 20 | 2 2 5 12 19 | isphtpyd |  |-  ( ph -> G e. ( F ( PHtpy ` J ) F ) ) |