Metamath Proof Explorer


Theorem phtpyid

Description: A homotopy from a path to itself. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses phtpyid.1
|- G = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( F ` x ) )
phtpyid.3
|- ( ph -> F e. ( II Cn J ) )
Assertion phtpyid
|- ( ph -> G e. ( F ( PHtpy ` J ) F ) )

Proof

Step Hyp Ref Expression
1 phtpyid.1
 |-  G = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( F ` x ) )
2 phtpyid.3
 |-  ( ph -> F e. ( II Cn J ) )
3 iitopon
 |-  II e. ( TopOn ` ( 0 [,] 1 ) )
4 3 a1i
 |-  ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) )
5 1 4 2 htpyid
 |-  ( ph -> G e. ( F ( II Htpy J ) F ) )
6 0elunit
 |-  0 e. ( 0 [,] 1 )
7 fveq2
 |-  ( x = 0 -> ( F ` x ) = ( F ` 0 ) )
8 eqidd
 |-  ( y = s -> ( F ` 0 ) = ( F ` 0 ) )
9 fvex
 |-  ( F ` 0 ) e. _V
10 7 8 1 9 ovmpo
 |-  ( ( 0 e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> ( 0 G s ) = ( F ` 0 ) )
11 6 10 mpan
 |-  ( s e. ( 0 [,] 1 ) -> ( 0 G s ) = ( F ` 0 ) )
12 11 adantl
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 G s ) = ( F ` 0 ) )
13 1elunit
 |-  1 e. ( 0 [,] 1 )
14 fveq2
 |-  ( x = 1 -> ( F ` x ) = ( F ` 1 ) )
15 eqidd
 |-  ( y = s -> ( F ` 1 ) = ( F ` 1 ) )
16 fvex
 |-  ( F ` 1 ) e. _V
17 14 15 1 16 ovmpo
 |-  ( ( 1 e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> ( 1 G s ) = ( F ` 1 ) )
18 13 17 mpan
 |-  ( s e. ( 0 [,] 1 ) -> ( 1 G s ) = ( F ` 1 ) )
19 18 adantl
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 G s ) = ( F ` 1 ) )
20 2 2 5 12 19 isphtpyd
 |-  ( ph -> G e. ( F ( PHtpy ` J ) F ) )