Step |
Hyp |
Ref |
Expression |
1 |
|
phtpyid.1 |
|- G = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( F ` x ) ) |
2 |
|
phtpyid.3 |
|- ( ph -> F e. ( II Cn J ) ) |
3 |
|
iitopon |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |
4 |
3
|
a1i |
|- ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) |
5 |
1 4 2
|
htpyid |
|- ( ph -> G e. ( F ( II Htpy J ) F ) ) |
6 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
7 |
|
fveq2 |
|- ( x = 0 -> ( F ` x ) = ( F ` 0 ) ) |
8 |
|
eqidd |
|- ( y = s -> ( F ` 0 ) = ( F ` 0 ) ) |
9 |
|
fvex |
|- ( F ` 0 ) e. _V |
10 |
7 8 1 9
|
ovmpo |
|- ( ( 0 e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> ( 0 G s ) = ( F ` 0 ) ) |
11 |
6 10
|
mpan |
|- ( s e. ( 0 [,] 1 ) -> ( 0 G s ) = ( F ` 0 ) ) |
12 |
11
|
adantl |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 G s ) = ( F ` 0 ) ) |
13 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
14 |
|
fveq2 |
|- ( x = 1 -> ( F ` x ) = ( F ` 1 ) ) |
15 |
|
eqidd |
|- ( y = s -> ( F ` 1 ) = ( F ` 1 ) ) |
16 |
|
fvex |
|- ( F ` 1 ) e. _V |
17 |
14 15 1 16
|
ovmpo |
|- ( ( 1 e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> ( 1 G s ) = ( F ` 1 ) ) |
18 |
13 17
|
mpan |
|- ( s e. ( 0 [,] 1 ) -> ( 1 G s ) = ( F ` 1 ) ) |
19 |
18
|
adantl |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 G s ) = ( F ` 1 ) ) |
20 |
2 2 5 12 19
|
isphtpyd |
|- ( ph -> G e. ( F ( PHtpy ` J ) F ) ) |