| Step |
Hyp |
Ref |
Expression |
| 1 |
|
phtpyco2.f |
|- ( ph -> F e. ( II Cn J ) ) |
| 2 |
|
phtpyco2.g |
|- ( ph -> G e. ( II Cn J ) ) |
| 3 |
|
phtpyco2.p |
|- ( ph -> P e. ( J Cn K ) ) |
| 4 |
|
phtpyco2.h |
|- ( ph -> H e. ( F ( PHtpy ` J ) G ) ) |
| 5 |
|
cnco |
|- ( ( F e. ( II Cn J ) /\ P e. ( J Cn K ) ) -> ( P o. F ) e. ( II Cn K ) ) |
| 6 |
1 3 5
|
syl2anc |
|- ( ph -> ( P o. F ) e. ( II Cn K ) ) |
| 7 |
|
cnco |
|- ( ( G e. ( II Cn J ) /\ P e. ( J Cn K ) ) -> ( P o. G ) e. ( II Cn K ) ) |
| 8 |
2 3 7
|
syl2anc |
|- ( ph -> ( P o. G ) e. ( II Cn K ) ) |
| 9 |
1 2
|
phtpyhtpy |
|- ( ph -> ( F ( PHtpy ` J ) G ) C_ ( F ( II Htpy J ) G ) ) |
| 10 |
9 4
|
sseldd |
|- ( ph -> H e. ( F ( II Htpy J ) G ) ) |
| 11 |
1 2 3 10
|
htpyco2 |
|- ( ph -> ( P o. H ) e. ( ( P o. F ) ( II Htpy K ) ( P o. G ) ) ) |
| 12 |
1 2 4
|
phtpyi |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 0 H s ) = ( F ` 0 ) /\ ( 1 H s ) = ( F ` 1 ) ) ) |
| 13 |
12
|
simpld |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 H s ) = ( F ` 0 ) ) |
| 14 |
13
|
fveq2d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( P ` ( 0 H s ) ) = ( P ` ( F ` 0 ) ) ) |
| 15 |
|
iitopon |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |
| 16 |
|
txtopon |
|- ( ( II e. ( TopOn ` ( 0 [,] 1 ) ) /\ II e. ( TopOn ` ( 0 [,] 1 ) ) ) -> ( II tX II ) e. ( TopOn ` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) |
| 17 |
15 15 16
|
mp2an |
|- ( II tX II ) e. ( TopOn ` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
| 18 |
|
cntop2 |
|- ( F e. ( II Cn J ) -> J e. Top ) |
| 19 |
1 18
|
syl |
|- ( ph -> J e. Top ) |
| 20 |
|
toptopon2 |
|- ( J e. Top <-> J e. ( TopOn ` U. J ) ) |
| 21 |
19 20
|
sylib |
|- ( ph -> J e. ( TopOn ` U. J ) ) |
| 22 |
1 2
|
phtpycn |
|- ( ph -> ( F ( PHtpy ` J ) G ) C_ ( ( II tX II ) Cn J ) ) |
| 23 |
22 4
|
sseldd |
|- ( ph -> H e. ( ( II tX II ) Cn J ) ) |
| 24 |
|
cnf2 |
|- ( ( ( II tX II ) e. ( TopOn ` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) /\ J e. ( TopOn ` U. J ) /\ H e. ( ( II tX II ) Cn J ) ) -> H : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> U. J ) |
| 25 |
17 21 23 24
|
mp3an2i |
|- ( ph -> H : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> U. J ) |
| 26 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
| 27 |
|
simpr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> s e. ( 0 [,] 1 ) ) |
| 28 |
|
opelxpi |
|- ( ( 0 e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> <. 0 , s >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
| 29 |
26 27 28
|
sylancr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> <. 0 , s >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
| 30 |
|
fvco3 |
|- ( ( H : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> U. J /\ <. 0 , s >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) -> ( ( P o. H ) ` <. 0 , s >. ) = ( P ` ( H ` <. 0 , s >. ) ) ) |
| 31 |
25 29 30
|
syl2an2r |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( P o. H ) ` <. 0 , s >. ) = ( P ` ( H ` <. 0 , s >. ) ) ) |
| 32 |
|
df-ov |
|- ( 0 ( P o. H ) s ) = ( ( P o. H ) ` <. 0 , s >. ) |
| 33 |
|
df-ov |
|- ( 0 H s ) = ( H ` <. 0 , s >. ) |
| 34 |
33
|
fveq2i |
|- ( P ` ( 0 H s ) ) = ( P ` ( H ` <. 0 , s >. ) ) |
| 35 |
31 32 34
|
3eqtr4g |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 ( P o. H ) s ) = ( P ` ( 0 H s ) ) ) |
| 36 |
|
iiuni |
|- ( 0 [,] 1 ) = U. II |
| 37 |
|
eqid |
|- U. J = U. J |
| 38 |
36 37
|
cnf |
|- ( F e. ( II Cn J ) -> F : ( 0 [,] 1 ) --> U. J ) |
| 39 |
1 38
|
syl |
|- ( ph -> F : ( 0 [,] 1 ) --> U. J ) |
| 40 |
39
|
adantr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> F : ( 0 [,] 1 ) --> U. J ) |
| 41 |
|
fvco3 |
|- ( ( F : ( 0 [,] 1 ) --> U. J /\ 0 e. ( 0 [,] 1 ) ) -> ( ( P o. F ) ` 0 ) = ( P ` ( F ` 0 ) ) ) |
| 42 |
40 26 41
|
sylancl |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( P o. F ) ` 0 ) = ( P ` ( F ` 0 ) ) ) |
| 43 |
14 35 42
|
3eqtr4d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 ( P o. H ) s ) = ( ( P o. F ) ` 0 ) ) |
| 44 |
12
|
simprd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 H s ) = ( F ` 1 ) ) |
| 45 |
44
|
fveq2d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( P ` ( 1 H s ) ) = ( P ` ( F ` 1 ) ) ) |
| 46 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
| 47 |
|
opelxpi |
|- ( ( 1 e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> <. 1 , s >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
| 48 |
46 27 47
|
sylancr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> <. 1 , s >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
| 49 |
|
fvco3 |
|- ( ( H : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> U. J /\ <. 1 , s >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) -> ( ( P o. H ) ` <. 1 , s >. ) = ( P ` ( H ` <. 1 , s >. ) ) ) |
| 50 |
25 48 49
|
syl2an2r |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( P o. H ) ` <. 1 , s >. ) = ( P ` ( H ` <. 1 , s >. ) ) ) |
| 51 |
|
df-ov |
|- ( 1 ( P o. H ) s ) = ( ( P o. H ) ` <. 1 , s >. ) |
| 52 |
|
df-ov |
|- ( 1 H s ) = ( H ` <. 1 , s >. ) |
| 53 |
52
|
fveq2i |
|- ( P ` ( 1 H s ) ) = ( P ` ( H ` <. 1 , s >. ) ) |
| 54 |
50 51 53
|
3eqtr4g |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 ( P o. H ) s ) = ( P ` ( 1 H s ) ) ) |
| 55 |
|
fvco3 |
|- ( ( F : ( 0 [,] 1 ) --> U. J /\ 1 e. ( 0 [,] 1 ) ) -> ( ( P o. F ) ` 1 ) = ( P ` ( F ` 1 ) ) ) |
| 56 |
40 46 55
|
sylancl |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( P o. F ) ` 1 ) = ( P ` ( F ` 1 ) ) ) |
| 57 |
45 54 56
|
3eqtr4d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 ( P o. H ) s ) = ( ( P o. F ) ` 1 ) ) |
| 58 |
6 8 11 43 57
|
isphtpyd |
|- ( ph -> ( P o. H ) e. ( ( P o. F ) ( PHtpy ` K ) ( P o. G ) ) ) |