| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phtpyco2.f |  |-  ( ph -> F e. ( II Cn J ) ) | 
						
							| 2 |  | phtpyco2.g |  |-  ( ph -> G e. ( II Cn J ) ) | 
						
							| 3 |  | phtpyco2.p |  |-  ( ph -> P e. ( J Cn K ) ) | 
						
							| 4 |  | phtpyco2.h |  |-  ( ph -> H e. ( F ( PHtpy ` J ) G ) ) | 
						
							| 5 |  | cnco |  |-  ( ( F e. ( II Cn J ) /\ P e. ( J Cn K ) ) -> ( P o. F ) e. ( II Cn K ) ) | 
						
							| 6 | 1 3 5 | syl2anc |  |-  ( ph -> ( P o. F ) e. ( II Cn K ) ) | 
						
							| 7 |  | cnco |  |-  ( ( G e. ( II Cn J ) /\ P e. ( J Cn K ) ) -> ( P o. G ) e. ( II Cn K ) ) | 
						
							| 8 | 2 3 7 | syl2anc |  |-  ( ph -> ( P o. G ) e. ( II Cn K ) ) | 
						
							| 9 | 1 2 | phtpyhtpy |  |-  ( ph -> ( F ( PHtpy ` J ) G ) C_ ( F ( II Htpy J ) G ) ) | 
						
							| 10 | 9 4 | sseldd |  |-  ( ph -> H e. ( F ( II Htpy J ) G ) ) | 
						
							| 11 | 1 2 3 10 | htpyco2 |  |-  ( ph -> ( P o. H ) e. ( ( P o. F ) ( II Htpy K ) ( P o. G ) ) ) | 
						
							| 12 | 1 2 4 | phtpyi |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 0 H s ) = ( F ` 0 ) /\ ( 1 H s ) = ( F ` 1 ) ) ) | 
						
							| 13 | 12 | simpld |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 H s ) = ( F ` 0 ) ) | 
						
							| 14 | 13 | fveq2d |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( P ` ( 0 H s ) ) = ( P ` ( F ` 0 ) ) ) | 
						
							| 15 |  | iitopon |  |-  II e. ( TopOn ` ( 0 [,] 1 ) ) | 
						
							| 16 |  | txtopon |  |-  ( ( II e. ( TopOn ` ( 0 [,] 1 ) ) /\ II e. ( TopOn ` ( 0 [,] 1 ) ) ) -> ( II tX II ) e. ( TopOn ` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) | 
						
							| 17 | 15 15 16 | mp2an |  |-  ( II tX II ) e. ( TopOn ` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 18 |  | cntop2 |  |-  ( F e. ( II Cn J ) -> J e. Top ) | 
						
							| 19 | 1 18 | syl |  |-  ( ph -> J e. Top ) | 
						
							| 20 |  | toptopon2 |  |-  ( J e. Top <-> J e. ( TopOn ` U. J ) ) | 
						
							| 21 | 19 20 | sylib |  |-  ( ph -> J e. ( TopOn ` U. J ) ) | 
						
							| 22 | 1 2 | phtpycn |  |-  ( ph -> ( F ( PHtpy ` J ) G ) C_ ( ( II tX II ) Cn J ) ) | 
						
							| 23 | 22 4 | sseldd |  |-  ( ph -> H e. ( ( II tX II ) Cn J ) ) | 
						
							| 24 |  | cnf2 |  |-  ( ( ( II tX II ) e. ( TopOn ` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) /\ J e. ( TopOn ` U. J ) /\ H e. ( ( II tX II ) Cn J ) ) -> H : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> U. J ) | 
						
							| 25 | 17 21 23 24 | mp3an2i |  |-  ( ph -> H : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> U. J ) | 
						
							| 26 |  | 0elunit |  |-  0 e. ( 0 [,] 1 ) | 
						
							| 27 |  | simpr |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> s e. ( 0 [,] 1 ) ) | 
						
							| 28 |  | opelxpi |  |-  ( ( 0 e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> <. 0 , s >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 29 | 26 27 28 | sylancr |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> <. 0 , s >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 30 |  | fvco3 |  |-  ( ( H : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> U. J /\ <. 0 , s >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) -> ( ( P o. H ) ` <. 0 , s >. ) = ( P ` ( H ` <. 0 , s >. ) ) ) | 
						
							| 31 | 25 29 30 | syl2an2r |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( P o. H ) ` <. 0 , s >. ) = ( P ` ( H ` <. 0 , s >. ) ) ) | 
						
							| 32 |  | df-ov |  |-  ( 0 ( P o. H ) s ) = ( ( P o. H ) ` <. 0 , s >. ) | 
						
							| 33 |  | df-ov |  |-  ( 0 H s ) = ( H ` <. 0 , s >. ) | 
						
							| 34 | 33 | fveq2i |  |-  ( P ` ( 0 H s ) ) = ( P ` ( H ` <. 0 , s >. ) ) | 
						
							| 35 | 31 32 34 | 3eqtr4g |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 ( P o. H ) s ) = ( P ` ( 0 H s ) ) ) | 
						
							| 36 |  | iiuni |  |-  ( 0 [,] 1 ) = U. II | 
						
							| 37 |  | eqid |  |-  U. J = U. J | 
						
							| 38 | 36 37 | cnf |  |-  ( F e. ( II Cn J ) -> F : ( 0 [,] 1 ) --> U. J ) | 
						
							| 39 | 1 38 | syl |  |-  ( ph -> F : ( 0 [,] 1 ) --> U. J ) | 
						
							| 40 | 39 | adantr |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> F : ( 0 [,] 1 ) --> U. J ) | 
						
							| 41 |  | fvco3 |  |-  ( ( F : ( 0 [,] 1 ) --> U. J /\ 0 e. ( 0 [,] 1 ) ) -> ( ( P o. F ) ` 0 ) = ( P ` ( F ` 0 ) ) ) | 
						
							| 42 | 40 26 41 | sylancl |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( P o. F ) ` 0 ) = ( P ` ( F ` 0 ) ) ) | 
						
							| 43 | 14 35 42 | 3eqtr4d |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 ( P o. H ) s ) = ( ( P o. F ) ` 0 ) ) | 
						
							| 44 | 12 | simprd |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 H s ) = ( F ` 1 ) ) | 
						
							| 45 | 44 | fveq2d |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( P ` ( 1 H s ) ) = ( P ` ( F ` 1 ) ) ) | 
						
							| 46 |  | 1elunit |  |-  1 e. ( 0 [,] 1 ) | 
						
							| 47 |  | opelxpi |  |-  ( ( 1 e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> <. 1 , s >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 48 | 46 27 47 | sylancr |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> <. 1 , s >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 49 |  | fvco3 |  |-  ( ( H : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> U. J /\ <. 1 , s >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) -> ( ( P o. H ) ` <. 1 , s >. ) = ( P ` ( H ` <. 1 , s >. ) ) ) | 
						
							| 50 | 25 48 49 | syl2an2r |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( P o. H ) ` <. 1 , s >. ) = ( P ` ( H ` <. 1 , s >. ) ) ) | 
						
							| 51 |  | df-ov |  |-  ( 1 ( P o. H ) s ) = ( ( P o. H ) ` <. 1 , s >. ) | 
						
							| 52 |  | df-ov |  |-  ( 1 H s ) = ( H ` <. 1 , s >. ) | 
						
							| 53 | 52 | fveq2i |  |-  ( P ` ( 1 H s ) ) = ( P ` ( H ` <. 1 , s >. ) ) | 
						
							| 54 | 50 51 53 | 3eqtr4g |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 ( P o. H ) s ) = ( P ` ( 1 H s ) ) ) | 
						
							| 55 |  | fvco3 |  |-  ( ( F : ( 0 [,] 1 ) --> U. J /\ 1 e. ( 0 [,] 1 ) ) -> ( ( P o. F ) ` 1 ) = ( P ` ( F ` 1 ) ) ) | 
						
							| 56 | 40 46 55 | sylancl |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( P o. F ) ` 1 ) = ( P ` ( F ` 1 ) ) ) | 
						
							| 57 | 45 54 56 | 3eqtr4d |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 ( P o. H ) s ) = ( ( P o. F ) ` 1 ) ) | 
						
							| 58 | 6 8 11 43 57 | isphtpyd |  |-  ( ph -> ( P o. H ) e. ( ( P o. F ) ( PHtpy ` K ) ( P o. G ) ) ) |