Step |
Hyp |
Ref |
Expression |
1 |
|
phtpycc.1 |
|- M = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> if ( y <_ ( 1 / 2 ) , ( x K ( 2 x. y ) ) , ( x L ( ( 2 x. y ) - 1 ) ) ) ) |
2 |
|
phtpycc.3 |
|- ( ph -> F e. ( II Cn J ) ) |
3 |
|
phtpycc.4 |
|- ( ph -> G e. ( II Cn J ) ) |
4 |
|
phtpycc.5 |
|- ( ph -> H e. ( II Cn J ) ) |
5 |
|
phtpycc.6 |
|- ( ph -> K e. ( F ( PHtpy ` J ) G ) ) |
6 |
|
phtpycc.7 |
|- ( ph -> L e. ( G ( PHtpy ` J ) H ) ) |
7 |
|
iitopon |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |
8 |
7
|
a1i |
|- ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) |
9 |
2 3
|
phtpyhtpy |
|- ( ph -> ( F ( PHtpy ` J ) G ) C_ ( F ( II Htpy J ) G ) ) |
10 |
9 5
|
sseldd |
|- ( ph -> K e. ( F ( II Htpy J ) G ) ) |
11 |
3 4
|
phtpyhtpy |
|- ( ph -> ( G ( PHtpy ` J ) H ) C_ ( G ( II Htpy J ) H ) ) |
12 |
11 6
|
sseldd |
|- ( ph -> L e. ( G ( II Htpy J ) H ) ) |
13 |
1 8 2 3 4 10 12
|
htpycc |
|- ( ph -> M e. ( F ( II Htpy J ) H ) ) |
14 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
15 |
|
simpr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> s e. ( 0 [,] 1 ) ) |
16 |
|
simpr |
|- ( ( x = 0 /\ y = s ) -> y = s ) |
17 |
16
|
breq1d |
|- ( ( x = 0 /\ y = s ) -> ( y <_ ( 1 / 2 ) <-> s <_ ( 1 / 2 ) ) ) |
18 |
|
simpl |
|- ( ( x = 0 /\ y = s ) -> x = 0 ) |
19 |
16
|
oveq2d |
|- ( ( x = 0 /\ y = s ) -> ( 2 x. y ) = ( 2 x. s ) ) |
20 |
18 19
|
oveq12d |
|- ( ( x = 0 /\ y = s ) -> ( x K ( 2 x. y ) ) = ( 0 K ( 2 x. s ) ) ) |
21 |
19
|
oveq1d |
|- ( ( x = 0 /\ y = s ) -> ( ( 2 x. y ) - 1 ) = ( ( 2 x. s ) - 1 ) ) |
22 |
18 21
|
oveq12d |
|- ( ( x = 0 /\ y = s ) -> ( x L ( ( 2 x. y ) - 1 ) ) = ( 0 L ( ( 2 x. s ) - 1 ) ) ) |
23 |
17 20 22
|
ifbieq12d |
|- ( ( x = 0 /\ y = s ) -> if ( y <_ ( 1 / 2 ) , ( x K ( 2 x. y ) ) , ( x L ( ( 2 x. y ) - 1 ) ) ) = if ( s <_ ( 1 / 2 ) , ( 0 K ( 2 x. s ) ) , ( 0 L ( ( 2 x. s ) - 1 ) ) ) ) |
24 |
|
ovex |
|- ( 0 K ( 2 x. s ) ) e. _V |
25 |
|
ovex |
|- ( 0 L ( ( 2 x. s ) - 1 ) ) e. _V |
26 |
24 25
|
ifex |
|- if ( s <_ ( 1 / 2 ) , ( 0 K ( 2 x. s ) ) , ( 0 L ( ( 2 x. s ) - 1 ) ) ) e. _V |
27 |
23 1 26
|
ovmpoa |
|- ( ( 0 e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> ( 0 M s ) = if ( s <_ ( 1 / 2 ) , ( 0 K ( 2 x. s ) ) , ( 0 L ( ( 2 x. s ) - 1 ) ) ) ) |
28 |
14 15 27
|
sylancr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 M s ) = if ( s <_ ( 1 / 2 ) , ( 0 K ( 2 x. s ) ) , ( 0 L ( ( 2 x. s ) - 1 ) ) ) ) |
29 |
|
simpll |
|- ( ( ( ph /\ s e. ( 0 [,] 1 ) ) /\ s <_ ( 1 / 2 ) ) -> ph ) |
30 |
|
elii1 |
|- ( s e. ( 0 [,] ( 1 / 2 ) ) <-> ( s e. ( 0 [,] 1 ) /\ s <_ ( 1 / 2 ) ) ) |
31 |
|
iihalf1 |
|- ( s e. ( 0 [,] ( 1 / 2 ) ) -> ( 2 x. s ) e. ( 0 [,] 1 ) ) |
32 |
30 31
|
sylbir |
|- ( ( s e. ( 0 [,] 1 ) /\ s <_ ( 1 / 2 ) ) -> ( 2 x. s ) e. ( 0 [,] 1 ) ) |
33 |
32
|
adantll |
|- ( ( ( ph /\ s e. ( 0 [,] 1 ) ) /\ s <_ ( 1 / 2 ) ) -> ( 2 x. s ) e. ( 0 [,] 1 ) ) |
34 |
2 3 5
|
phtpyi |
|- ( ( ph /\ ( 2 x. s ) e. ( 0 [,] 1 ) ) -> ( ( 0 K ( 2 x. s ) ) = ( F ` 0 ) /\ ( 1 K ( 2 x. s ) ) = ( F ` 1 ) ) ) |
35 |
29 33 34
|
syl2anc |
|- ( ( ( ph /\ s e. ( 0 [,] 1 ) ) /\ s <_ ( 1 / 2 ) ) -> ( ( 0 K ( 2 x. s ) ) = ( F ` 0 ) /\ ( 1 K ( 2 x. s ) ) = ( F ` 1 ) ) ) |
36 |
35
|
simpld |
|- ( ( ( ph /\ s e. ( 0 [,] 1 ) ) /\ s <_ ( 1 / 2 ) ) -> ( 0 K ( 2 x. s ) ) = ( F ` 0 ) ) |
37 |
|
simpll |
|- ( ( ( ph /\ s e. ( 0 [,] 1 ) ) /\ -. s <_ ( 1 / 2 ) ) -> ph ) |
38 |
|
elii2 |
|- ( ( s e. ( 0 [,] 1 ) /\ -. s <_ ( 1 / 2 ) ) -> s e. ( ( 1 / 2 ) [,] 1 ) ) |
39 |
|
iihalf2 |
|- ( s e. ( ( 1 / 2 ) [,] 1 ) -> ( ( 2 x. s ) - 1 ) e. ( 0 [,] 1 ) ) |
40 |
38 39
|
syl |
|- ( ( s e. ( 0 [,] 1 ) /\ -. s <_ ( 1 / 2 ) ) -> ( ( 2 x. s ) - 1 ) e. ( 0 [,] 1 ) ) |
41 |
40
|
adantll |
|- ( ( ( ph /\ s e. ( 0 [,] 1 ) ) /\ -. s <_ ( 1 / 2 ) ) -> ( ( 2 x. s ) - 1 ) e. ( 0 [,] 1 ) ) |
42 |
3 4 6
|
phtpyi |
|- ( ( ph /\ ( ( 2 x. s ) - 1 ) e. ( 0 [,] 1 ) ) -> ( ( 0 L ( ( 2 x. s ) - 1 ) ) = ( G ` 0 ) /\ ( 1 L ( ( 2 x. s ) - 1 ) ) = ( G ` 1 ) ) ) |
43 |
37 41 42
|
syl2anc |
|- ( ( ( ph /\ s e. ( 0 [,] 1 ) ) /\ -. s <_ ( 1 / 2 ) ) -> ( ( 0 L ( ( 2 x. s ) - 1 ) ) = ( G ` 0 ) /\ ( 1 L ( ( 2 x. s ) - 1 ) ) = ( G ` 1 ) ) ) |
44 |
43
|
simpld |
|- ( ( ( ph /\ s e. ( 0 [,] 1 ) ) /\ -. s <_ ( 1 / 2 ) ) -> ( 0 L ( ( 2 x. s ) - 1 ) ) = ( G ` 0 ) ) |
45 |
2 3 5
|
phtpy01 |
|- ( ph -> ( ( F ` 0 ) = ( G ` 0 ) /\ ( F ` 1 ) = ( G ` 1 ) ) ) |
46 |
45
|
ad2antrr |
|- ( ( ( ph /\ s e. ( 0 [,] 1 ) ) /\ -. s <_ ( 1 / 2 ) ) -> ( ( F ` 0 ) = ( G ` 0 ) /\ ( F ` 1 ) = ( G ` 1 ) ) ) |
47 |
46
|
simpld |
|- ( ( ( ph /\ s e. ( 0 [,] 1 ) ) /\ -. s <_ ( 1 / 2 ) ) -> ( F ` 0 ) = ( G ` 0 ) ) |
48 |
44 47
|
eqtr4d |
|- ( ( ( ph /\ s e. ( 0 [,] 1 ) ) /\ -. s <_ ( 1 / 2 ) ) -> ( 0 L ( ( 2 x. s ) - 1 ) ) = ( F ` 0 ) ) |
49 |
36 48
|
ifeqda |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> if ( s <_ ( 1 / 2 ) , ( 0 K ( 2 x. s ) ) , ( 0 L ( ( 2 x. s ) - 1 ) ) ) = ( F ` 0 ) ) |
50 |
28 49
|
eqtrd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 M s ) = ( F ` 0 ) ) |
51 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
52 |
|
simpr |
|- ( ( x = 1 /\ y = s ) -> y = s ) |
53 |
52
|
breq1d |
|- ( ( x = 1 /\ y = s ) -> ( y <_ ( 1 / 2 ) <-> s <_ ( 1 / 2 ) ) ) |
54 |
|
simpl |
|- ( ( x = 1 /\ y = s ) -> x = 1 ) |
55 |
52
|
oveq2d |
|- ( ( x = 1 /\ y = s ) -> ( 2 x. y ) = ( 2 x. s ) ) |
56 |
54 55
|
oveq12d |
|- ( ( x = 1 /\ y = s ) -> ( x K ( 2 x. y ) ) = ( 1 K ( 2 x. s ) ) ) |
57 |
55
|
oveq1d |
|- ( ( x = 1 /\ y = s ) -> ( ( 2 x. y ) - 1 ) = ( ( 2 x. s ) - 1 ) ) |
58 |
54 57
|
oveq12d |
|- ( ( x = 1 /\ y = s ) -> ( x L ( ( 2 x. y ) - 1 ) ) = ( 1 L ( ( 2 x. s ) - 1 ) ) ) |
59 |
53 56 58
|
ifbieq12d |
|- ( ( x = 1 /\ y = s ) -> if ( y <_ ( 1 / 2 ) , ( x K ( 2 x. y ) ) , ( x L ( ( 2 x. y ) - 1 ) ) ) = if ( s <_ ( 1 / 2 ) , ( 1 K ( 2 x. s ) ) , ( 1 L ( ( 2 x. s ) - 1 ) ) ) ) |
60 |
|
ovex |
|- ( 1 K ( 2 x. s ) ) e. _V |
61 |
|
ovex |
|- ( 1 L ( ( 2 x. s ) - 1 ) ) e. _V |
62 |
60 61
|
ifex |
|- if ( s <_ ( 1 / 2 ) , ( 1 K ( 2 x. s ) ) , ( 1 L ( ( 2 x. s ) - 1 ) ) ) e. _V |
63 |
59 1 62
|
ovmpoa |
|- ( ( 1 e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> ( 1 M s ) = if ( s <_ ( 1 / 2 ) , ( 1 K ( 2 x. s ) ) , ( 1 L ( ( 2 x. s ) - 1 ) ) ) ) |
64 |
51 15 63
|
sylancr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 M s ) = if ( s <_ ( 1 / 2 ) , ( 1 K ( 2 x. s ) ) , ( 1 L ( ( 2 x. s ) - 1 ) ) ) ) |
65 |
35
|
simprd |
|- ( ( ( ph /\ s e. ( 0 [,] 1 ) ) /\ s <_ ( 1 / 2 ) ) -> ( 1 K ( 2 x. s ) ) = ( F ` 1 ) ) |
66 |
43
|
simprd |
|- ( ( ( ph /\ s e. ( 0 [,] 1 ) ) /\ -. s <_ ( 1 / 2 ) ) -> ( 1 L ( ( 2 x. s ) - 1 ) ) = ( G ` 1 ) ) |
67 |
46
|
simprd |
|- ( ( ( ph /\ s e. ( 0 [,] 1 ) ) /\ -. s <_ ( 1 / 2 ) ) -> ( F ` 1 ) = ( G ` 1 ) ) |
68 |
66 67
|
eqtr4d |
|- ( ( ( ph /\ s e. ( 0 [,] 1 ) ) /\ -. s <_ ( 1 / 2 ) ) -> ( 1 L ( ( 2 x. s ) - 1 ) ) = ( F ` 1 ) ) |
69 |
65 68
|
ifeqda |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> if ( s <_ ( 1 / 2 ) , ( 1 K ( 2 x. s ) ) , ( 1 L ( ( 2 x. s ) - 1 ) ) ) = ( F ` 1 ) ) |
70 |
64 69
|
eqtrd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 M s ) = ( F ` 1 ) ) |
71 |
2 4 13 50 70
|
isphtpyd |
|- ( ph -> M e. ( F ( PHtpy ` J ) H ) ) |