Step |
Hyp |
Ref |
Expression |
1 |
|
phtpycc.1 |
⊢ 𝑀 = ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ if ( 𝑦 ≤ ( 1 / 2 ) , ( 𝑥 𝐾 ( 2 · 𝑦 ) ) , ( 𝑥 𝐿 ( ( 2 · 𝑦 ) − 1 ) ) ) ) |
2 |
|
phtpycc.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( II Cn 𝐽 ) ) |
3 |
|
phtpycc.4 |
⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) |
4 |
|
phtpycc.5 |
⊢ ( 𝜑 → 𝐻 ∈ ( II Cn 𝐽 ) ) |
5 |
|
phtpycc.6 |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ) |
6 |
|
phtpycc.7 |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) |
7 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
8 |
7
|
a1i |
⊢ ( 𝜑 → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
9 |
2 3
|
phtpyhtpy |
⊢ ( 𝜑 → ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ⊆ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ) |
10 |
9 5
|
sseldd |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ) |
11 |
3 4
|
phtpyhtpy |
⊢ ( 𝜑 → ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ⊆ ( 𝐺 ( II Htpy 𝐽 ) 𝐻 ) ) |
12 |
11 6
|
sseldd |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐺 ( II Htpy 𝐽 ) 𝐻 ) ) |
13 |
1 8 2 3 4 10 12
|
htpycc |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐹 ( II Htpy 𝐽 ) 𝐻 ) ) |
14 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 𝑠 ∈ ( 0 [,] 1 ) ) |
16 |
|
simpr |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → 𝑦 = 𝑠 ) |
17 |
16
|
breq1d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → ( 𝑦 ≤ ( 1 / 2 ) ↔ 𝑠 ≤ ( 1 / 2 ) ) ) |
18 |
|
simpl |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → 𝑥 = 0 ) |
19 |
16
|
oveq2d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → ( 2 · 𝑦 ) = ( 2 · 𝑠 ) ) |
20 |
18 19
|
oveq12d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → ( 𝑥 𝐾 ( 2 · 𝑦 ) ) = ( 0 𝐾 ( 2 · 𝑠 ) ) ) |
21 |
19
|
oveq1d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → ( ( 2 · 𝑦 ) − 1 ) = ( ( 2 · 𝑠 ) − 1 ) ) |
22 |
18 21
|
oveq12d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → ( 𝑥 𝐿 ( ( 2 · 𝑦 ) − 1 ) ) = ( 0 𝐿 ( ( 2 · 𝑠 ) − 1 ) ) ) |
23 |
17 20 22
|
ifbieq12d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → if ( 𝑦 ≤ ( 1 / 2 ) , ( 𝑥 𝐾 ( 2 · 𝑦 ) ) , ( 𝑥 𝐿 ( ( 2 · 𝑦 ) − 1 ) ) ) = if ( 𝑠 ≤ ( 1 / 2 ) , ( 0 𝐾 ( 2 · 𝑠 ) ) , ( 0 𝐿 ( ( 2 · 𝑠 ) − 1 ) ) ) ) |
24 |
|
ovex |
⊢ ( 0 𝐾 ( 2 · 𝑠 ) ) ∈ V |
25 |
|
ovex |
⊢ ( 0 𝐿 ( ( 2 · 𝑠 ) − 1 ) ) ∈ V |
26 |
24 25
|
ifex |
⊢ if ( 𝑠 ≤ ( 1 / 2 ) , ( 0 𝐾 ( 2 · 𝑠 ) ) , ( 0 𝐿 ( ( 2 · 𝑠 ) − 1 ) ) ) ∈ V |
27 |
23 1 26
|
ovmpoa |
⊢ ( ( 0 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝑀 𝑠 ) = if ( 𝑠 ≤ ( 1 / 2 ) , ( 0 𝐾 ( 2 · 𝑠 ) ) , ( 0 𝐿 ( ( 2 · 𝑠 ) − 1 ) ) ) ) |
28 |
14 15 27
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝑀 𝑠 ) = if ( 𝑠 ≤ ( 1 / 2 ) , ( 0 𝐾 ( 2 · 𝑠 ) ) , ( 0 𝐿 ( ( 2 · 𝑠 ) − 1 ) ) ) ) |
29 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ 𝑠 ≤ ( 1 / 2 ) ) → 𝜑 ) |
30 |
|
elii1 |
⊢ ( 𝑠 ∈ ( 0 [,] ( 1 / 2 ) ) ↔ ( 𝑠 ∈ ( 0 [,] 1 ) ∧ 𝑠 ≤ ( 1 / 2 ) ) ) |
31 |
|
iihalf1 |
⊢ ( 𝑠 ∈ ( 0 [,] ( 1 / 2 ) ) → ( 2 · 𝑠 ) ∈ ( 0 [,] 1 ) ) |
32 |
30 31
|
sylbir |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ∧ 𝑠 ≤ ( 1 / 2 ) ) → ( 2 · 𝑠 ) ∈ ( 0 [,] 1 ) ) |
33 |
32
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ 𝑠 ≤ ( 1 / 2 ) ) → ( 2 · 𝑠 ) ∈ ( 0 [,] 1 ) ) |
34 |
2 3 5
|
phtpyi |
⊢ ( ( 𝜑 ∧ ( 2 · 𝑠 ) ∈ ( 0 [,] 1 ) ) → ( ( 0 𝐾 ( 2 · 𝑠 ) ) = ( 𝐹 ‘ 0 ) ∧ ( 1 𝐾 ( 2 · 𝑠 ) ) = ( 𝐹 ‘ 1 ) ) ) |
35 |
29 33 34
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ 𝑠 ≤ ( 1 / 2 ) ) → ( ( 0 𝐾 ( 2 · 𝑠 ) ) = ( 𝐹 ‘ 0 ) ∧ ( 1 𝐾 ( 2 · 𝑠 ) ) = ( 𝐹 ‘ 1 ) ) ) |
36 |
35
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ 𝑠 ≤ ( 1 / 2 ) ) → ( 0 𝐾 ( 2 · 𝑠 ) ) = ( 𝐹 ‘ 0 ) ) |
37 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ¬ 𝑠 ≤ ( 1 / 2 ) ) → 𝜑 ) |
38 |
|
elii2 |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑠 ≤ ( 1 / 2 ) ) → 𝑠 ∈ ( ( 1 / 2 ) [,] 1 ) ) |
39 |
|
iihalf2 |
⊢ ( 𝑠 ∈ ( ( 1 / 2 ) [,] 1 ) → ( ( 2 · 𝑠 ) − 1 ) ∈ ( 0 [,] 1 ) ) |
40 |
38 39
|
syl |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑠 ≤ ( 1 / 2 ) ) → ( ( 2 · 𝑠 ) − 1 ) ∈ ( 0 [,] 1 ) ) |
41 |
40
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ¬ 𝑠 ≤ ( 1 / 2 ) ) → ( ( 2 · 𝑠 ) − 1 ) ∈ ( 0 [,] 1 ) ) |
42 |
3 4 6
|
phtpyi |
⊢ ( ( 𝜑 ∧ ( ( 2 · 𝑠 ) − 1 ) ∈ ( 0 [,] 1 ) ) → ( ( 0 𝐿 ( ( 2 · 𝑠 ) − 1 ) ) = ( 𝐺 ‘ 0 ) ∧ ( 1 𝐿 ( ( 2 · 𝑠 ) − 1 ) ) = ( 𝐺 ‘ 1 ) ) ) |
43 |
37 41 42
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ¬ 𝑠 ≤ ( 1 / 2 ) ) → ( ( 0 𝐿 ( ( 2 · 𝑠 ) − 1 ) ) = ( 𝐺 ‘ 0 ) ∧ ( 1 𝐿 ( ( 2 · 𝑠 ) − 1 ) ) = ( 𝐺 ‘ 1 ) ) ) |
44 |
43
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ¬ 𝑠 ≤ ( 1 / 2 ) ) → ( 0 𝐿 ( ( 2 · 𝑠 ) − 1 ) ) = ( 𝐺 ‘ 0 ) ) |
45 |
2 3 5
|
phtpy01 |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 0 ) = ( 𝐺 ‘ 0 ) ∧ ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) ) |
46 |
45
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ¬ 𝑠 ≤ ( 1 / 2 ) ) → ( ( 𝐹 ‘ 0 ) = ( 𝐺 ‘ 0 ) ∧ ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) ) |
47 |
46
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ¬ 𝑠 ≤ ( 1 / 2 ) ) → ( 𝐹 ‘ 0 ) = ( 𝐺 ‘ 0 ) ) |
48 |
44 47
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ¬ 𝑠 ≤ ( 1 / 2 ) ) → ( 0 𝐿 ( ( 2 · 𝑠 ) − 1 ) ) = ( 𝐹 ‘ 0 ) ) |
49 |
36 48
|
ifeqda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → if ( 𝑠 ≤ ( 1 / 2 ) , ( 0 𝐾 ( 2 · 𝑠 ) ) , ( 0 𝐿 ( ( 2 · 𝑠 ) − 1 ) ) ) = ( 𝐹 ‘ 0 ) ) |
50 |
28 49
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝑀 𝑠 ) = ( 𝐹 ‘ 0 ) ) |
51 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
52 |
|
simpr |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → 𝑦 = 𝑠 ) |
53 |
52
|
breq1d |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → ( 𝑦 ≤ ( 1 / 2 ) ↔ 𝑠 ≤ ( 1 / 2 ) ) ) |
54 |
|
simpl |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → 𝑥 = 1 ) |
55 |
52
|
oveq2d |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → ( 2 · 𝑦 ) = ( 2 · 𝑠 ) ) |
56 |
54 55
|
oveq12d |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → ( 𝑥 𝐾 ( 2 · 𝑦 ) ) = ( 1 𝐾 ( 2 · 𝑠 ) ) ) |
57 |
55
|
oveq1d |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → ( ( 2 · 𝑦 ) − 1 ) = ( ( 2 · 𝑠 ) − 1 ) ) |
58 |
54 57
|
oveq12d |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → ( 𝑥 𝐿 ( ( 2 · 𝑦 ) − 1 ) ) = ( 1 𝐿 ( ( 2 · 𝑠 ) − 1 ) ) ) |
59 |
53 56 58
|
ifbieq12d |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → if ( 𝑦 ≤ ( 1 / 2 ) , ( 𝑥 𝐾 ( 2 · 𝑦 ) ) , ( 𝑥 𝐿 ( ( 2 · 𝑦 ) − 1 ) ) ) = if ( 𝑠 ≤ ( 1 / 2 ) , ( 1 𝐾 ( 2 · 𝑠 ) ) , ( 1 𝐿 ( ( 2 · 𝑠 ) − 1 ) ) ) ) |
60 |
|
ovex |
⊢ ( 1 𝐾 ( 2 · 𝑠 ) ) ∈ V |
61 |
|
ovex |
⊢ ( 1 𝐿 ( ( 2 · 𝑠 ) − 1 ) ) ∈ V |
62 |
60 61
|
ifex |
⊢ if ( 𝑠 ≤ ( 1 / 2 ) , ( 1 𝐾 ( 2 · 𝑠 ) ) , ( 1 𝐿 ( ( 2 · 𝑠 ) − 1 ) ) ) ∈ V |
63 |
59 1 62
|
ovmpoa |
⊢ ( ( 1 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝑀 𝑠 ) = if ( 𝑠 ≤ ( 1 / 2 ) , ( 1 𝐾 ( 2 · 𝑠 ) ) , ( 1 𝐿 ( ( 2 · 𝑠 ) − 1 ) ) ) ) |
64 |
51 15 63
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝑀 𝑠 ) = if ( 𝑠 ≤ ( 1 / 2 ) , ( 1 𝐾 ( 2 · 𝑠 ) ) , ( 1 𝐿 ( ( 2 · 𝑠 ) − 1 ) ) ) ) |
65 |
35
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ 𝑠 ≤ ( 1 / 2 ) ) → ( 1 𝐾 ( 2 · 𝑠 ) ) = ( 𝐹 ‘ 1 ) ) |
66 |
43
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ¬ 𝑠 ≤ ( 1 / 2 ) ) → ( 1 𝐿 ( ( 2 · 𝑠 ) − 1 ) ) = ( 𝐺 ‘ 1 ) ) |
67 |
46
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ¬ 𝑠 ≤ ( 1 / 2 ) ) → ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) |
68 |
66 67
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ¬ 𝑠 ≤ ( 1 / 2 ) ) → ( 1 𝐿 ( ( 2 · 𝑠 ) − 1 ) ) = ( 𝐹 ‘ 1 ) ) |
69 |
65 68
|
ifeqda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → if ( 𝑠 ≤ ( 1 / 2 ) , ( 1 𝐾 ( 2 · 𝑠 ) ) , ( 1 𝐿 ( ( 2 · 𝑠 ) − 1 ) ) ) = ( 𝐹 ‘ 1 ) ) |
70 |
64 69
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝑀 𝑠 ) = ( 𝐹 ‘ 1 ) ) |
71 |
2 4 13 50 70
|
isphtpyd |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) |