| Step |
Hyp |
Ref |
Expression |
| 1 |
|
htpycc.1 |
⊢ 𝑁 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ ( 0 [,] 1 ) ↦ if ( 𝑦 ≤ ( 1 / 2 ) , ( 𝑥 𝐿 ( 2 · 𝑦 ) ) , ( 𝑥 𝑀 ( ( 2 · 𝑦 ) − 1 ) ) ) ) |
| 2 |
|
htpycc.2 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 3 |
|
htpycc.4 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 4 |
|
htpycc.5 |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 5 |
|
htpycc.6 |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 6 |
|
htpycc.7 |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐹 ( 𝐽 Htpy 𝐾 ) 𝐺 ) ) |
| 7 |
|
htpycc.8 |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐺 ( 𝐽 Htpy 𝐾 ) 𝐻 ) ) |
| 8 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
| 10 |
|
eqid |
⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) |
| 11 |
|
eqid |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) |
| 12 |
|
eqid |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) |
| 13 |
|
dfii2 |
⊢ II = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) |
| 14 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 15 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 16 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
| 17 |
|
halfge0 |
⊢ 0 ≤ ( 1 / 2 ) |
| 18 |
|
1re |
⊢ 1 ∈ ℝ |
| 19 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
| 20 |
16 18 19
|
ltleii |
⊢ ( 1 / 2 ) ≤ 1 |
| 21 |
|
elicc01 |
⊢ ( ( 1 / 2 ) ∈ ( 0 [,] 1 ) ↔ ( ( 1 / 2 ) ∈ ℝ ∧ 0 ≤ ( 1 / 2 ) ∧ ( 1 / 2 ) ≤ 1 ) ) |
| 22 |
16 17 20 21
|
mpbir3an |
⊢ ( 1 / 2 ) ∈ ( 0 [,] 1 ) |
| 23 |
22
|
a1i |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ ( 0 [,] 1 ) ) |
| 24 |
2 3 4 6
|
htpyi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( ( 𝑠 𝐿 0 ) = ( 𝐹 ‘ 𝑠 ) ∧ ( 𝑠 𝐿 1 ) = ( 𝐺 ‘ 𝑠 ) ) ) |
| 25 |
24
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( 𝑠 𝐿 1 ) = ( 𝐺 ‘ 𝑠 ) ) |
| 26 |
2 4 5 7
|
htpyi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( ( 𝑠 𝑀 0 ) = ( 𝐺 ‘ 𝑠 ) ∧ ( 𝑠 𝑀 1 ) = ( 𝐻 ‘ 𝑠 ) ) ) |
| 27 |
26
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( 𝑠 𝑀 0 ) = ( 𝐺 ‘ 𝑠 ) ) |
| 28 |
25 27
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( 𝑠 𝐿 1 ) = ( 𝑠 𝑀 0 ) ) |
| 29 |
28
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝑋 ( 𝑠 𝐿 1 ) = ( 𝑠 𝑀 0 ) ) |
| 30 |
|
oveq1 |
⊢ ( 𝑠 = 𝑥 → ( 𝑠 𝐿 1 ) = ( 𝑥 𝐿 1 ) ) |
| 31 |
|
oveq1 |
⊢ ( 𝑠 = 𝑥 → ( 𝑠 𝑀 0 ) = ( 𝑥 𝑀 0 ) ) |
| 32 |
30 31
|
eqeq12d |
⊢ ( 𝑠 = 𝑥 → ( ( 𝑠 𝐿 1 ) = ( 𝑠 𝑀 0 ) ↔ ( 𝑥 𝐿 1 ) = ( 𝑥 𝑀 0 ) ) ) |
| 33 |
32
|
rspccva |
⊢ ( ( ∀ 𝑠 ∈ 𝑋 ( 𝑠 𝐿 1 ) = ( 𝑠 𝑀 0 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐿 1 ) = ( 𝑥 𝑀 0 ) ) |
| 34 |
29 33
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐿 1 ) = ( 𝑥 𝑀 0 ) ) |
| 35 |
34
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑦 = ( 1 / 2 ) ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑥 𝐿 1 ) = ( 𝑥 𝑀 0 ) ) |
| 36 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑦 = ( 1 / 2 ) ∧ 𝑥 ∈ 𝑋 ) ) → 𝑦 = ( 1 / 2 ) ) |
| 37 |
36
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 = ( 1 / 2 ) ∧ 𝑥 ∈ 𝑋 ) ) → ( 2 · 𝑦 ) = ( 2 · ( 1 / 2 ) ) ) |
| 38 |
|
2cn |
⊢ 2 ∈ ℂ |
| 39 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 40 |
38 39
|
recidi |
⊢ ( 2 · ( 1 / 2 ) ) = 1 |
| 41 |
37 40
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑦 = ( 1 / 2 ) ∧ 𝑥 ∈ 𝑋 ) ) → ( 2 · 𝑦 ) = 1 ) |
| 42 |
41
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 = ( 1 / 2 ) ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑥 𝐿 ( 2 · 𝑦 ) ) = ( 𝑥 𝐿 1 ) ) |
| 43 |
41
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑦 = ( 1 / 2 ) ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 2 · 𝑦 ) − 1 ) = ( 1 − 1 ) ) |
| 44 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 45 |
43 44
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑦 = ( 1 / 2 ) ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 2 · 𝑦 ) − 1 ) = 0 ) |
| 46 |
45
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 = ( 1 / 2 ) ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑥 𝑀 ( ( 2 · 𝑦 ) − 1 ) ) = ( 𝑥 𝑀 0 ) ) |
| 47 |
35 42 46
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑦 = ( 1 / 2 ) ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑥 𝐿 ( 2 · 𝑦 ) ) = ( 𝑥 𝑀 ( ( 2 · 𝑦 ) − 1 ) ) ) |
| 48 |
|
retopon |
⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) |
| 49 |
|
0re |
⊢ 0 ∈ ℝ |
| 50 |
|
iccssre |
⊢ ( ( 0 ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) → ( 0 [,] ( 1 / 2 ) ) ⊆ ℝ ) |
| 51 |
49 16 50
|
mp2an |
⊢ ( 0 [,] ( 1 / 2 ) ) ⊆ ℝ |
| 52 |
|
resttopon |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ∧ ( 0 [,] ( 1 / 2 ) ) ⊆ ℝ ) → ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ∈ ( TopOn ‘ ( 0 [,] ( 1 / 2 ) ) ) ) |
| 53 |
48 51 52
|
mp2an |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ∈ ( TopOn ‘ ( 0 [,] ( 1 / 2 ) ) ) |
| 54 |
53
|
a1i |
⊢ ( 𝜑 → ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ∈ ( TopOn ‘ ( 0 [,] ( 1 / 2 ) ) ) ) |
| 55 |
54 2
|
cnmpt2nd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 0 [,] ( 1 / 2 ) ) , 𝑥 ∈ 𝑋 ↦ 𝑥 ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ×t 𝐽 ) Cn 𝐽 ) ) |
| 56 |
54 2
|
cnmpt1st |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 0 [,] ( 1 / 2 ) ) , 𝑥 ∈ 𝑋 ↦ 𝑦 ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ×t 𝐽 ) Cn ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ) ) |
| 57 |
11
|
iihalf1cn |
⊢ ( 𝑧 ∈ ( 0 [,] ( 1 / 2 ) ) ↦ ( 2 · 𝑧 ) ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) Cn II ) |
| 58 |
57
|
a1i |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 0 [,] ( 1 / 2 ) ) ↦ ( 2 · 𝑧 ) ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) Cn II ) ) |
| 59 |
|
oveq2 |
⊢ ( 𝑧 = 𝑦 → ( 2 · 𝑧 ) = ( 2 · 𝑦 ) ) |
| 60 |
54 2 56 54 58 59
|
cnmpt21 |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 0 [,] ( 1 / 2 ) ) , 𝑥 ∈ 𝑋 ↦ ( 2 · 𝑦 ) ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ×t 𝐽 ) Cn II ) ) |
| 61 |
2 3 4
|
htpycn |
⊢ ( 𝜑 → ( 𝐹 ( 𝐽 Htpy 𝐾 ) 𝐺 ) ⊆ ( ( 𝐽 ×t II ) Cn 𝐾 ) ) |
| 62 |
61 6
|
sseldd |
⊢ ( 𝜑 → 𝐿 ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ) |
| 63 |
54 2 55 60 62
|
cnmpt22f |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 0 [,] ( 1 / 2 ) ) , 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝐿 ( 2 · 𝑦 ) ) ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ×t 𝐽 ) Cn 𝐾 ) ) |
| 64 |
|
iccssre |
⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 1 / 2 ) [,] 1 ) ⊆ ℝ ) |
| 65 |
16 18 64
|
mp2an |
⊢ ( ( 1 / 2 ) [,] 1 ) ⊆ ℝ |
| 66 |
|
resttopon |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ∧ ( ( 1 / 2 ) [,] 1 ) ⊆ ℝ ) → ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ∈ ( TopOn ‘ ( ( 1 / 2 ) [,] 1 ) ) ) |
| 67 |
48 65 66
|
mp2an |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ∈ ( TopOn ‘ ( ( 1 / 2 ) [,] 1 ) ) |
| 68 |
67
|
a1i |
⊢ ( 𝜑 → ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ∈ ( TopOn ‘ ( ( 1 / 2 ) [,] 1 ) ) ) |
| 69 |
68 2
|
cnmpt2nd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( ( 1 / 2 ) [,] 1 ) , 𝑥 ∈ 𝑋 ↦ 𝑥 ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ×t 𝐽 ) Cn 𝐽 ) ) |
| 70 |
68 2
|
cnmpt1st |
⊢ ( 𝜑 → ( 𝑦 ∈ ( ( 1 / 2 ) [,] 1 ) , 𝑥 ∈ 𝑋 ↦ 𝑦 ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ×t 𝐽 ) Cn ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ) ) |
| 71 |
12
|
iihalf2cn |
⊢ ( 𝑧 ∈ ( ( 1 / 2 ) [,] 1 ) ↦ ( ( 2 · 𝑧 ) − 1 ) ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) Cn II ) |
| 72 |
71
|
a1i |
⊢ ( 𝜑 → ( 𝑧 ∈ ( ( 1 / 2 ) [,] 1 ) ↦ ( ( 2 · 𝑧 ) − 1 ) ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) Cn II ) ) |
| 73 |
59
|
oveq1d |
⊢ ( 𝑧 = 𝑦 → ( ( 2 · 𝑧 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) |
| 74 |
68 2 70 68 72 73
|
cnmpt21 |
⊢ ( 𝜑 → ( 𝑦 ∈ ( ( 1 / 2 ) [,] 1 ) , 𝑥 ∈ 𝑋 ↦ ( ( 2 · 𝑦 ) − 1 ) ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ×t 𝐽 ) Cn II ) ) |
| 75 |
2 4 5
|
htpycn |
⊢ ( 𝜑 → ( 𝐺 ( 𝐽 Htpy 𝐾 ) 𝐻 ) ⊆ ( ( 𝐽 ×t II ) Cn 𝐾 ) ) |
| 76 |
75 7
|
sseldd |
⊢ ( 𝜑 → 𝑀 ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ) |
| 77 |
68 2 69 74 76
|
cnmpt22f |
⊢ ( 𝜑 → ( 𝑦 ∈ ( ( 1 / 2 ) [,] 1 ) , 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝑀 ( ( 2 · 𝑦 ) − 1 ) ) ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ×t 𝐽 ) Cn 𝐾 ) ) |
| 78 |
10 11 12 13 14 15 23 2 47 63 77
|
cnmpopc |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 0 [,] 1 ) , 𝑥 ∈ 𝑋 ↦ if ( 𝑦 ≤ ( 1 / 2 ) , ( 𝑥 𝐿 ( 2 · 𝑦 ) ) , ( 𝑥 𝑀 ( ( 2 · 𝑦 ) − 1 ) ) ) ) ∈ ( ( II ×t 𝐽 ) Cn 𝐾 ) ) |
| 79 |
9 2 78
|
cnmptcom |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ ( 0 [,] 1 ) ↦ if ( 𝑦 ≤ ( 1 / 2 ) , ( 𝑥 𝐿 ( 2 · 𝑦 ) ) , ( 𝑥 𝑀 ( ( 2 · 𝑦 ) − 1 ) ) ) ) ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ) |
| 80 |
1 79
|
eqeltrid |
⊢ ( 𝜑 → 𝑁 ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ) |
| 81 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → 𝑠 ∈ 𝑋 ) |
| 82 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
| 83 |
|
simpr |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → 𝑦 = 0 ) |
| 84 |
83 17
|
eqbrtrdi |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → 𝑦 ≤ ( 1 / 2 ) ) |
| 85 |
84
|
iftrued |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → if ( 𝑦 ≤ ( 1 / 2 ) , ( 𝑥 𝐿 ( 2 · 𝑦 ) ) , ( 𝑥 𝑀 ( ( 2 · 𝑦 ) − 1 ) ) ) = ( 𝑥 𝐿 ( 2 · 𝑦 ) ) ) |
| 86 |
|
simpl |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → 𝑥 = 𝑠 ) |
| 87 |
83
|
oveq2d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → ( 2 · 𝑦 ) = ( 2 · 0 ) ) |
| 88 |
|
2t0e0 |
⊢ ( 2 · 0 ) = 0 |
| 89 |
87 88
|
eqtrdi |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → ( 2 · 𝑦 ) = 0 ) |
| 90 |
86 89
|
oveq12d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → ( 𝑥 𝐿 ( 2 · 𝑦 ) ) = ( 𝑠 𝐿 0 ) ) |
| 91 |
85 90
|
eqtrd |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → if ( 𝑦 ≤ ( 1 / 2 ) , ( 𝑥 𝐿 ( 2 · 𝑦 ) ) , ( 𝑥 𝑀 ( ( 2 · 𝑦 ) − 1 ) ) ) = ( 𝑠 𝐿 0 ) ) |
| 92 |
|
ovex |
⊢ ( 𝑠 𝐿 0 ) ∈ V |
| 93 |
91 1 92
|
ovmpoa |
⊢ ( ( 𝑠 ∈ 𝑋 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝑁 0 ) = ( 𝑠 𝐿 0 ) ) |
| 94 |
81 82 93
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( 𝑠 𝑁 0 ) = ( 𝑠 𝐿 0 ) ) |
| 95 |
24
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( 𝑠 𝐿 0 ) = ( 𝐹 ‘ 𝑠 ) ) |
| 96 |
94 95
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( 𝑠 𝑁 0 ) = ( 𝐹 ‘ 𝑠 ) ) |
| 97 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
| 98 |
16 18
|
ltnlei |
⊢ ( ( 1 / 2 ) < 1 ↔ ¬ 1 ≤ ( 1 / 2 ) ) |
| 99 |
19 98
|
mpbi |
⊢ ¬ 1 ≤ ( 1 / 2 ) |
| 100 |
|
simpr |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → 𝑦 = 1 ) |
| 101 |
100
|
breq1d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → ( 𝑦 ≤ ( 1 / 2 ) ↔ 1 ≤ ( 1 / 2 ) ) ) |
| 102 |
99 101
|
mtbiri |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → ¬ 𝑦 ≤ ( 1 / 2 ) ) |
| 103 |
102
|
iffalsed |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → if ( 𝑦 ≤ ( 1 / 2 ) , ( 𝑥 𝐿 ( 2 · 𝑦 ) ) , ( 𝑥 𝑀 ( ( 2 · 𝑦 ) − 1 ) ) ) = ( 𝑥 𝑀 ( ( 2 · 𝑦 ) − 1 ) ) ) |
| 104 |
|
simpl |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → 𝑥 = 𝑠 ) |
| 105 |
100
|
oveq2d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → ( 2 · 𝑦 ) = ( 2 · 1 ) ) |
| 106 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
| 107 |
105 106
|
eqtrdi |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → ( 2 · 𝑦 ) = 2 ) |
| 108 |
107
|
oveq1d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → ( ( 2 · 𝑦 ) − 1 ) = ( 2 − 1 ) ) |
| 109 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
| 110 |
108 109
|
eqtrdi |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → ( ( 2 · 𝑦 ) − 1 ) = 1 ) |
| 111 |
104 110
|
oveq12d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → ( 𝑥 𝑀 ( ( 2 · 𝑦 ) − 1 ) ) = ( 𝑠 𝑀 1 ) ) |
| 112 |
103 111
|
eqtrd |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → if ( 𝑦 ≤ ( 1 / 2 ) , ( 𝑥 𝐿 ( 2 · 𝑦 ) ) , ( 𝑥 𝑀 ( ( 2 · 𝑦 ) − 1 ) ) ) = ( 𝑠 𝑀 1 ) ) |
| 113 |
|
ovex |
⊢ ( 𝑠 𝑀 1 ) ∈ V |
| 114 |
112 1 113
|
ovmpoa |
⊢ ( ( 𝑠 ∈ 𝑋 ∧ 1 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝑁 1 ) = ( 𝑠 𝑀 1 ) ) |
| 115 |
81 97 114
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( 𝑠 𝑁 1 ) = ( 𝑠 𝑀 1 ) ) |
| 116 |
26
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( 𝑠 𝑀 1 ) = ( 𝐻 ‘ 𝑠 ) ) |
| 117 |
115 116
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( 𝑠 𝑁 1 ) = ( 𝐻 ‘ 𝑠 ) ) |
| 118 |
2 3 5 80 96 117
|
ishtpyd |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝐹 ( 𝐽 Htpy 𝐾 ) 𝐻 ) ) |