| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmpopc.r |
⊢ 𝑅 = ( topGen ‘ ran (,) ) |
| 2 |
|
cnmpopc.m |
⊢ 𝑀 = ( 𝑅 ↾t ( 𝐴 [,] 𝐵 ) ) |
| 3 |
|
cnmpopc.n |
⊢ 𝑁 = ( 𝑅 ↾t ( 𝐵 [,] 𝐶 ) ) |
| 4 |
|
cnmpopc.o |
⊢ 𝑂 = ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) |
| 5 |
|
cnmpopc.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 6 |
|
cnmpopc.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 7 |
|
cnmpopc.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐶 ) ) |
| 8 |
|
cnmpopc.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 9 |
|
cnmpopc.q |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐵 ∧ 𝑦 ∈ 𝑋 ) ) → 𝐷 = 𝐸 ) |
| 10 |
|
cnmpopc.d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝑋 ↦ 𝐷 ) ∈ ( ( 𝑀 ×t 𝐽 ) Cn 𝐾 ) ) |
| 11 |
|
cnmpopc.e |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ 𝐸 ) ∈ ( ( 𝑁 ×t 𝐽 ) Cn 𝐾 ) ) |
| 12 |
|
eqid |
⊢ ∪ ( 𝑂 ×t 𝐽 ) = ∪ ( 𝑂 ×t 𝐽 ) |
| 13 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
| 14 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 [,] 𝐶 ) ⊆ ℝ ) |
| 15 |
5 6 14
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐶 ) ⊆ ℝ ) |
| 16 |
15 7
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 17 |
|
icccld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 18 |
5 16 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 19 |
1
|
fveq2i |
⊢ ( Clsd ‘ 𝑅 ) = ( Clsd ‘ ( topGen ‘ ran (,) ) ) |
| 20 |
18 19
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ∈ ( Clsd ‘ 𝑅 ) ) |
| 21 |
|
ssun1 |
⊢ ( 𝐴 [,] 𝐵 ) ⊆ ( ( 𝐴 [,] 𝐵 ) ∪ ( 𝐵 [,] 𝐶 ) ) |
| 22 |
|
iccsplit |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ( 𝐴 [,] 𝐶 ) ) → ( 𝐴 [,] 𝐶 ) = ( ( 𝐴 [,] 𝐵 ) ∪ ( 𝐵 [,] 𝐶 ) ) ) |
| 23 |
5 6 7 22
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐶 ) = ( ( 𝐴 [,] 𝐵 ) ∪ ( 𝐵 [,] 𝐶 ) ) ) |
| 24 |
21 23
|
sseqtrrid |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ( 𝐴 [,] 𝐶 ) ) |
| 25 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
| 26 |
1
|
unieqi |
⊢ ∪ 𝑅 = ∪ ( topGen ‘ ran (,) ) |
| 27 |
25 26
|
eqtr4i |
⊢ ℝ = ∪ 𝑅 |
| 28 |
27
|
restcldi |
⊢ ( ( ( 𝐴 [,] 𝐶 ) ⊆ ℝ ∧ ( 𝐴 [,] 𝐵 ) ∈ ( Clsd ‘ 𝑅 ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ( 𝐴 [,] 𝐶 ) ) → ( 𝐴 [,] 𝐵 ) ∈ ( Clsd ‘ ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) ) ) |
| 29 |
15 20 24 28
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ∈ ( Clsd ‘ ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) ) ) |
| 30 |
4
|
fveq2i |
⊢ ( Clsd ‘ 𝑂 ) = ( Clsd ‘ ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) ) |
| 31 |
29 30
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ∈ ( Clsd ‘ 𝑂 ) ) |
| 32 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 33 |
8 32
|
syl |
⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 34 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 35 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 36 |
35
|
topcld |
⊢ ( 𝐽 ∈ Top → ∪ 𝐽 ∈ ( Clsd ‘ 𝐽 ) ) |
| 37 |
8 34 36
|
3syl |
⊢ ( 𝜑 → ∪ 𝐽 ∈ ( Clsd ‘ 𝐽 ) ) |
| 38 |
33 37
|
eqeltrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) |
| 39 |
|
txcld |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ∈ ( Clsd ‘ 𝑂 ) ∧ 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ∈ ( Clsd ‘ ( 𝑂 ×t 𝐽 ) ) ) |
| 40 |
31 38 39
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ∈ ( Clsd ‘ ( 𝑂 ×t 𝐽 ) ) ) |
| 41 |
|
icccld |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 [,] 𝐶 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 42 |
16 6 41
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 [,] 𝐶 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 43 |
42 19
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝐵 [,] 𝐶 ) ∈ ( Clsd ‘ 𝑅 ) ) |
| 44 |
|
ssun2 |
⊢ ( 𝐵 [,] 𝐶 ) ⊆ ( ( 𝐴 [,] 𝐵 ) ∪ ( 𝐵 [,] 𝐶 ) ) |
| 45 |
44 23
|
sseqtrrid |
⊢ ( 𝜑 → ( 𝐵 [,] 𝐶 ) ⊆ ( 𝐴 [,] 𝐶 ) ) |
| 46 |
27
|
restcldi |
⊢ ( ( ( 𝐴 [,] 𝐶 ) ⊆ ℝ ∧ ( 𝐵 [,] 𝐶 ) ∈ ( Clsd ‘ 𝑅 ) ∧ ( 𝐵 [,] 𝐶 ) ⊆ ( 𝐴 [,] 𝐶 ) ) → ( 𝐵 [,] 𝐶 ) ∈ ( Clsd ‘ ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) ) ) |
| 47 |
15 43 45 46
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 [,] 𝐶 ) ∈ ( Clsd ‘ ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) ) ) |
| 48 |
47 30
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝐵 [,] 𝐶 ) ∈ ( Clsd ‘ 𝑂 ) ) |
| 49 |
|
txcld |
⊢ ( ( ( 𝐵 [,] 𝐶 ) ∈ ( Clsd ‘ 𝑂 ) ∧ 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ∈ ( Clsd ‘ ( 𝑂 ×t 𝐽 ) ) ) |
| 50 |
48 38 49
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ∈ ( Clsd ‘ ( 𝑂 ×t 𝐽 ) ) ) |
| 51 |
23
|
xpeq1d |
⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐶 ) × 𝑋 ) = ( ( ( 𝐴 [,] 𝐵 ) ∪ ( 𝐵 [,] 𝐶 ) ) × 𝑋 ) ) |
| 52 |
|
xpundir |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ∪ ( 𝐵 [,] 𝐶 ) ) × 𝑋 ) = ( ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ∪ ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ) |
| 53 |
51 52
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐶 ) × 𝑋 ) = ( ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ∪ ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ) ) |
| 54 |
|
retopon |
⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) |
| 55 |
1 54
|
eqeltri |
⊢ 𝑅 ∈ ( TopOn ‘ ℝ ) |
| 56 |
|
resttopon |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ ℝ ) ∧ ( 𝐴 [,] 𝐶 ) ⊆ ℝ ) → ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐶 ) ) ) |
| 57 |
55 15 56
|
sylancr |
⊢ ( 𝜑 → ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐶 ) ) ) |
| 58 |
4 57
|
eqeltrid |
⊢ ( 𝜑 → 𝑂 ∈ ( TopOn ‘ ( 𝐴 [,] 𝐶 ) ) ) |
| 59 |
|
txtopon |
⊢ ( ( 𝑂 ∈ ( TopOn ‘ ( 𝐴 [,] 𝐶 ) ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( 𝑂 ×t 𝐽 ) ∈ ( TopOn ‘ ( ( 𝐴 [,] 𝐶 ) × 𝑋 ) ) ) |
| 60 |
58 8 59
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ×t 𝐽 ) ∈ ( TopOn ‘ ( ( 𝐴 [,] 𝐶 ) × 𝑋 ) ) ) |
| 61 |
|
toponuni |
⊢ ( ( 𝑂 ×t 𝐽 ) ∈ ( TopOn ‘ ( ( 𝐴 [,] 𝐶 ) × 𝑋 ) ) → ( ( 𝐴 [,] 𝐶 ) × 𝑋 ) = ∪ ( 𝑂 ×t 𝐽 ) ) |
| 62 |
60 61
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐶 ) × 𝑋 ) = ∪ ( 𝑂 ×t 𝐽 ) ) |
| 63 |
53 62
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ∪ ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ) = ∪ ( 𝑂 ×t 𝐽 ) ) |
| 64 |
24 15
|
sstrd |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 65 |
|
resttopon |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ ℝ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) → ( 𝑅 ↾t ( 𝐴 [,] 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 66 |
55 64 65
|
sylancr |
⊢ ( 𝜑 → ( 𝑅 ↾t ( 𝐴 [,] 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 67 |
2 66
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 68 |
|
txtopon |
⊢ ( ( 𝑀 ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( 𝑀 ×t 𝐽 ) ∈ ( TopOn ‘ ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ) ) |
| 69 |
67 8 68
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ×t 𝐽 ) ∈ ( TopOn ‘ ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ) ) |
| 70 |
|
cntop2 |
⊢ ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝑋 ↦ 𝐷 ) ∈ ( ( 𝑀 ×t 𝐽 ) Cn 𝐾 ) → 𝐾 ∈ Top ) |
| 71 |
10 70
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 72 |
|
toptopon2 |
⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 73 |
71 72
|
sylib |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 74 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 75 |
5 16 74
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 76 |
75
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
| 77 |
76
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ≤ 𝐵 ) |
| 78 |
77
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ 𝑋 ) → 𝑥 ≤ 𝐵 ) |
| 79 |
78
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ 𝑋 ) → if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) = 𝐷 ) |
| 80 |
79
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝑋 ↦ 𝐷 ) ) |
| 81 |
80 10
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ∈ ( ( 𝑀 ×t 𝐽 ) Cn 𝐾 ) ) |
| 82 |
|
cnf2 |
⊢ ( ( ( 𝑀 ×t 𝐽 ) ∈ ( TopOn ‘ ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ∈ ( ( 𝑀 ×t 𝐽 ) Cn 𝐾 ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) : ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ⟶ ∪ 𝐾 ) |
| 83 |
69 73 81 82
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) : ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ⟶ ∪ 𝐾 ) |
| 84 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) |
| 85 |
84
|
fmpo |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ 𝑋 if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ∈ ∪ 𝐾 ↔ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) : ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ⟶ ∪ 𝐾 ) |
| 86 |
83 85
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ 𝑋 if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ∈ ∪ 𝐾 ) |
| 87 |
45 15
|
sstrd |
⊢ ( 𝜑 → ( 𝐵 [,] 𝐶 ) ⊆ ℝ ) |
| 88 |
|
resttopon |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ ℝ ) ∧ ( 𝐵 [,] 𝐶 ) ⊆ ℝ ) → ( 𝑅 ↾t ( 𝐵 [,] 𝐶 ) ) ∈ ( TopOn ‘ ( 𝐵 [,] 𝐶 ) ) ) |
| 89 |
55 87 88
|
sylancr |
⊢ ( 𝜑 → ( 𝑅 ↾t ( 𝐵 [,] 𝐶 ) ) ∈ ( TopOn ‘ ( 𝐵 [,] 𝐶 ) ) ) |
| 90 |
3 89
|
eqeltrid |
⊢ ( 𝜑 → 𝑁 ∈ ( TopOn ‘ ( 𝐵 [,] 𝐶 ) ) ) |
| 91 |
|
txtopon |
⊢ ( ( 𝑁 ∈ ( TopOn ‘ ( 𝐵 [,] 𝐶 ) ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( 𝑁 ×t 𝐽 ) ∈ ( TopOn ‘ ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ) ) |
| 92 |
90 8 91
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ×t 𝐽 ) ∈ ( TopOn ‘ ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ) ) |
| 93 |
|
elicc2 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐵 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) ) |
| 94 |
16 6 93
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐵 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) ) |
| 95 |
94
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) → ( 𝑥 ∈ ℝ ∧ 𝐵 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) |
| 96 |
95
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) → 𝐵 ≤ 𝑥 ) |
| 97 |
96
|
biantrud |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) → ( 𝑥 ≤ 𝐵 ↔ ( 𝑥 ≤ 𝐵 ∧ 𝐵 ≤ 𝑥 ) ) ) |
| 98 |
95
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) → 𝑥 ∈ ℝ ) |
| 99 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) → 𝐵 ∈ ℝ ) |
| 100 |
98 99
|
letri3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) → ( 𝑥 = 𝐵 ↔ ( 𝑥 ≤ 𝐵 ∧ 𝐵 ≤ 𝑥 ) ) ) |
| 101 |
97 100
|
bitr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) → ( 𝑥 ≤ 𝐵 ↔ 𝑥 = 𝐵 ) ) |
| 102 |
101
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ≤ 𝐵 ↔ 𝑥 = 𝐵 ) ) |
| 103 |
9
|
ancom2s |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑥 = 𝐵 ) ) → 𝐷 = 𝐸 ) |
| 104 |
103
|
ifeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑥 = 𝐵 ) ) → if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) = if ( 𝑥 ≤ 𝐵 , 𝐸 , 𝐸 ) ) |
| 105 |
|
ifid |
⊢ if ( 𝑥 ≤ 𝐵 , 𝐸 , 𝐸 ) = 𝐸 |
| 106 |
104 105
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑥 = 𝐵 ) ) → if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) = 𝐸 ) |
| 107 |
106
|
expr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 = 𝐵 → if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) = 𝐸 ) ) |
| 108 |
107
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 = 𝐵 → if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) = 𝐸 ) ) |
| 109 |
102 108
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ≤ 𝐵 → if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) = 𝐸 ) ) |
| 110 |
|
iffalse |
⊢ ( ¬ 𝑥 ≤ 𝐵 → if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) = 𝐸 ) |
| 111 |
109 110
|
pm2.61d1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ∧ 𝑦 ∈ 𝑋 ) → if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) = 𝐸 ) |
| 112 |
111
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) = ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ 𝐸 ) ) |
| 113 |
112 11
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ∈ ( ( 𝑁 ×t 𝐽 ) Cn 𝐾 ) ) |
| 114 |
|
cnf2 |
⊢ ( ( ( 𝑁 ×t 𝐽 ) ∈ ( TopOn ‘ ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ∈ ( ( 𝑁 ×t 𝐽 ) Cn 𝐾 ) ) → ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) : ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ⟶ ∪ 𝐾 ) |
| 115 |
92 73 113 114
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) : ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ⟶ ∪ 𝐾 ) |
| 116 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) = ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) |
| 117 |
116
|
fmpo |
⊢ ( ∀ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ∀ 𝑦 ∈ 𝑋 if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ∈ ∪ 𝐾 ↔ ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) : ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ⟶ ∪ 𝐾 ) |
| 118 |
115 117
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ∀ 𝑦 ∈ 𝑋 if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ∈ ∪ 𝐾 ) |
| 119 |
|
ralun |
⊢ ( ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ 𝑋 if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ∈ ∪ 𝐾 ∧ ∀ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ∀ 𝑦 ∈ 𝑋 if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ∈ ∪ 𝐾 ) → ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∪ ( 𝐵 [,] 𝐶 ) ) ∀ 𝑦 ∈ 𝑋 if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ∈ ∪ 𝐾 ) |
| 120 |
86 118 119
|
syl2anc |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∪ ( 𝐵 [,] 𝐶 ) ) ∀ 𝑦 ∈ 𝑋 if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ∈ ∪ 𝐾 ) |
| 121 |
120 23
|
raleqtrrdv |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ∀ 𝑦 ∈ 𝑋 if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ∈ ∪ 𝐾 ) |
| 122 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) |
| 123 |
122
|
fmpo |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ∀ 𝑦 ∈ 𝑋 if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ∈ ∪ 𝐾 ↔ ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) : ( ( 𝐴 [,] 𝐶 ) × 𝑋 ) ⟶ ∪ 𝐾 ) |
| 124 |
121 123
|
sylib |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) : ( ( 𝐴 [,] 𝐶 ) × 𝑋 ) ⟶ ∪ 𝐾 ) |
| 125 |
62
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) : ( ( 𝐴 [,] 𝐶 ) × 𝑋 ) ⟶ ∪ 𝐾 ↔ ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) : ∪ ( 𝑂 ×t 𝐽 ) ⟶ ∪ 𝐾 ) ) |
| 126 |
124 125
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) : ∪ ( 𝑂 ×t 𝐽 ) ⟶ ∪ 𝐾 ) |
| 127 |
|
ssid |
⊢ 𝑋 ⊆ 𝑋 |
| 128 |
|
resmpo |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ ( 𝐴 [,] 𝐶 ) ∧ 𝑋 ⊆ 𝑋 ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ↾ ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ) |
| 129 |
24 127 128
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ↾ ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ) |
| 130 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 131 |
1 130
|
eqeltri |
⊢ 𝑅 ∈ Top |
| 132 |
|
ovex |
⊢ ( 𝐴 [,] 𝐶 ) ∈ V |
| 133 |
|
resttop |
⊢ ( ( 𝑅 ∈ Top ∧ ( 𝐴 [,] 𝐶 ) ∈ V ) → ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) ∈ Top ) |
| 134 |
131 132 133
|
mp2an |
⊢ ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) ∈ Top |
| 135 |
4 134
|
eqeltri |
⊢ 𝑂 ∈ Top |
| 136 |
135
|
a1i |
⊢ ( 𝜑 → 𝑂 ∈ Top ) |
| 137 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ∈ V ) |
| 138 |
|
txrest |
⊢ ( ( ( 𝑂 ∈ Top ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) ∧ ( ( 𝐴 [,] 𝐵 ) ∈ V ∧ 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) ) → ( ( 𝑂 ×t 𝐽 ) ↾t ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ) = ( ( 𝑂 ↾t ( 𝐴 [,] 𝐵 ) ) ×t ( 𝐽 ↾t 𝑋 ) ) ) |
| 139 |
136 8 137 38 138
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝑂 ×t 𝐽 ) ↾t ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ) = ( ( 𝑂 ↾t ( 𝐴 [,] 𝐵 ) ) ×t ( 𝐽 ↾t 𝑋 ) ) ) |
| 140 |
131
|
a1i |
⊢ ( 𝜑 → 𝑅 ∈ Top ) |
| 141 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐶 ) ∈ V ) |
| 142 |
|
restabs |
⊢ ( ( 𝑅 ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ( 𝐴 [,] 𝐶 ) ∧ ( 𝐴 [,] 𝐶 ) ∈ V ) → ( ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( 𝑅 ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 143 |
140 24 141 142
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( 𝑅 ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 144 |
4
|
oveq1i |
⊢ ( 𝑂 ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) ↾t ( 𝐴 [,] 𝐵 ) ) |
| 145 |
143 144 2
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝑂 ↾t ( 𝐴 [,] 𝐵 ) ) = 𝑀 ) |
| 146 |
33
|
oveq2d |
⊢ ( 𝜑 → ( 𝐽 ↾t 𝑋 ) = ( 𝐽 ↾t ∪ 𝐽 ) ) |
| 147 |
35
|
restid |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ↾t ∪ 𝐽 ) = 𝐽 ) |
| 148 |
8 147
|
syl |
⊢ ( 𝜑 → ( 𝐽 ↾t ∪ 𝐽 ) = 𝐽 ) |
| 149 |
146 148
|
eqtrd |
⊢ ( 𝜑 → ( 𝐽 ↾t 𝑋 ) = 𝐽 ) |
| 150 |
145 149
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑂 ↾t ( 𝐴 [,] 𝐵 ) ) ×t ( 𝐽 ↾t 𝑋 ) ) = ( 𝑀 ×t 𝐽 ) ) |
| 151 |
139 150
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ×t 𝐽 ) ↾t ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ) = ( 𝑀 ×t 𝐽 ) ) |
| 152 |
151
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑂 ×t 𝐽 ) ↾t ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ) Cn 𝐾 ) = ( ( 𝑀 ×t 𝐽 ) Cn 𝐾 ) ) |
| 153 |
81 129 152
|
3eltr4d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ↾ ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ) ∈ ( ( ( 𝑂 ×t 𝐽 ) ↾t ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ) Cn 𝐾 ) ) |
| 154 |
|
resmpo |
⊢ ( ( ( 𝐵 [,] 𝐶 ) ⊆ ( 𝐴 [,] 𝐶 ) ∧ 𝑋 ⊆ 𝑋 ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ↾ ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ) = ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ) |
| 155 |
45 127 154
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ↾ ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ) = ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ) |
| 156 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐵 [,] 𝐶 ) ∈ V ) |
| 157 |
|
txrest |
⊢ ( ( ( 𝑂 ∈ Top ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) ∧ ( ( 𝐵 [,] 𝐶 ) ∈ V ∧ 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) ) → ( ( 𝑂 ×t 𝐽 ) ↾t ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ) = ( ( 𝑂 ↾t ( 𝐵 [,] 𝐶 ) ) ×t ( 𝐽 ↾t 𝑋 ) ) ) |
| 158 |
136 8 156 38 157
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝑂 ×t 𝐽 ) ↾t ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ) = ( ( 𝑂 ↾t ( 𝐵 [,] 𝐶 ) ) ×t ( 𝐽 ↾t 𝑋 ) ) ) |
| 159 |
|
restabs |
⊢ ( ( 𝑅 ∈ Top ∧ ( 𝐵 [,] 𝐶 ) ⊆ ( 𝐴 [,] 𝐶 ) ∧ ( 𝐴 [,] 𝐶 ) ∈ V ) → ( ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) ↾t ( 𝐵 [,] 𝐶 ) ) = ( 𝑅 ↾t ( 𝐵 [,] 𝐶 ) ) ) |
| 160 |
140 45 141 159
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) ↾t ( 𝐵 [,] 𝐶 ) ) = ( 𝑅 ↾t ( 𝐵 [,] 𝐶 ) ) ) |
| 161 |
4
|
oveq1i |
⊢ ( 𝑂 ↾t ( 𝐵 [,] 𝐶 ) ) = ( ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) ↾t ( 𝐵 [,] 𝐶 ) ) |
| 162 |
160 161 3
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝑂 ↾t ( 𝐵 [,] 𝐶 ) ) = 𝑁 ) |
| 163 |
162 149
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑂 ↾t ( 𝐵 [,] 𝐶 ) ) ×t ( 𝐽 ↾t 𝑋 ) ) = ( 𝑁 ×t 𝐽 ) ) |
| 164 |
158 163
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ×t 𝐽 ) ↾t ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ) = ( 𝑁 ×t 𝐽 ) ) |
| 165 |
164
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑂 ×t 𝐽 ) ↾t ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ) Cn 𝐾 ) = ( ( 𝑁 ×t 𝐽 ) Cn 𝐾 ) ) |
| 166 |
113 155 165
|
3eltr4d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ↾ ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ) ∈ ( ( ( 𝑂 ×t 𝐽 ) ↾t ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ) Cn 𝐾 ) ) |
| 167 |
12 13 40 50 63 126 153 166
|
paste |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ∈ ( ( 𝑂 ×t 𝐽 ) Cn 𝐾 ) ) |