Step |
Hyp |
Ref |
Expression |
1 |
|
df-xp |
⊢ ( ( 𝐴 ∪ 𝐵 ) × 𝐶 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ 𝑦 ∈ 𝐶 ) } |
2 |
|
df-xp |
⊢ ( 𝐴 × 𝐶 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) } |
3 |
|
df-xp |
⊢ ( 𝐵 × 𝐶 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) } |
4 |
2 3
|
uneq12i |
⊢ ( ( 𝐴 × 𝐶 ) ∪ ( 𝐵 × 𝐶 ) ) = ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) } ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) } ) |
5 |
|
elun |
⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) |
6 |
5
|
anbi1i |
⊢ ( ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ 𝑦 ∈ 𝐶 ) ↔ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐶 ) ) |
7 |
|
andir |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐶 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∨ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
8 |
6 7
|
bitri |
⊢ ( ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ 𝑦 ∈ 𝐶 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∨ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
9 |
8
|
opabbii |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ 𝑦 ∈ 𝐶 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∨ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) } |
10 |
|
unopab |
⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) } ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) } ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∨ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) } |
11 |
9 10
|
eqtr4i |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ 𝑦 ∈ 𝐶 ) } = ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) } ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) } ) |
12 |
4 11
|
eqtr4i |
⊢ ( ( 𝐴 × 𝐶 ) ∪ ( 𝐵 × 𝐶 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ 𝑦 ∈ 𝐶 ) } |
13 |
1 12
|
eqtr4i |
⊢ ( ( 𝐴 ∪ 𝐵 ) × 𝐶 ) = ( ( 𝐴 × 𝐶 ) ∪ ( 𝐵 × 𝐶 ) ) |