Metamath Proof Explorer


Theorem xpundir

Description: Distributive law for Cartesian product over union. Similar to Theorem 103 of Suppes p. 52. (Contributed by NM, 30-Sep-2002)

Ref Expression
Assertion xpundir AB×C=A×CB×C

Proof

Step Hyp Ref Expression
1 df-xp AB×C=xy|xAByC
2 df-xp A×C=xy|xAyC
3 df-xp B×C=xy|xByC
4 2 3 uneq12i A×CB×C=xy|xAyCxy|xByC
5 elun xABxAxB
6 5 anbi1i xAByCxAxByC
7 andir xAxByCxAyCxByC
8 6 7 bitri xAByCxAyCxByC
9 8 opabbii xy|xAByC=xy|xAyCxByC
10 unopab xy|xAyCxy|xByC=xy|xAyCxByC
11 9 10 eqtr4i xy|xAByC=xy|xAyCxy|xByC
12 4 11 eqtr4i A×CB×C=xy|xAByC
13 1 12 eqtr4i AB×C=A×CB×C