Metamath Proof Explorer


Theorem paste

Description: Pasting lemma. If A and B are closed sets in X with A u. B = X , then any function whose restrictions to A and B are continuous is continuous on all of X . (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 21-Aug-2015)

Ref Expression
Hypotheses paste.1 𝑋 = 𝐽
paste.2 𝑌 = 𝐾
paste.4 ( 𝜑𝐴 ∈ ( Clsd ‘ 𝐽 ) )
paste.5 ( 𝜑𝐵 ∈ ( Clsd ‘ 𝐽 ) )
paste.6 ( 𝜑 → ( 𝐴𝐵 ) = 𝑋 )
paste.7 ( 𝜑𝐹 : 𝑋𝑌 )
paste.8 ( 𝜑 → ( 𝐹𝐴 ) ∈ ( ( 𝐽t 𝐴 ) Cn 𝐾 ) )
paste.9 ( 𝜑 → ( 𝐹𝐵 ) ∈ ( ( 𝐽t 𝐵 ) Cn 𝐾 ) )
Assertion paste ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐾 ) )

Proof

Step Hyp Ref Expression
1 paste.1 𝑋 = 𝐽
2 paste.2 𝑌 = 𝐾
3 paste.4 ( 𝜑𝐴 ∈ ( Clsd ‘ 𝐽 ) )
4 paste.5 ( 𝜑𝐵 ∈ ( Clsd ‘ 𝐽 ) )
5 paste.6 ( 𝜑 → ( 𝐴𝐵 ) = 𝑋 )
6 paste.7 ( 𝜑𝐹 : 𝑋𝑌 )
7 paste.8 ( 𝜑 → ( 𝐹𝐴 ) ∈ ( ( 𝐽t 𝐴 ) Cn 𝐾 ) )
8 paste.9 ( 𝜑 → ( 𝐹𝐵 ) ∈ ( ( 𝐽t 𝐵 ) Cn 𝐾 ) )
9 5 ineq2d ( 𝜑 → ( ( 𝐹𝑦 ) ∩ ( 𝐴𝐵 ) ) = ( ( 𝐹𝑦 ) ∩ 𝑋 ) )
10 indi ( ( 𝐹𝑦 ) ∩ ( 𝐴𝐵 ) ) = ( ( ( 𝐹𝑦 ) ∩ 𝐴 ) ∪ ( ( 𝐹𝑦 ) ∩ 𝐵 ) )
11 6 ffund ( 𝜑 → Fun 𝐹 )
12 respreima ( Fun 𝐹 → ( ( 𝐹𝐴 ) “ 𝑦 ) = ( ( 𝐹𝑦 ) ∩ 𝐴 ) )
13 respreima ( Fun 𝐹 → ( ( 𝐹𝐵 ) “ 𝑦 ) = ( ( 𝐹𝑦 ) ∩ 𝐵 ) )
14 12 13 uneq12d ( Fun 𝐹 → ( ( ( 𝐹𝐴 ) “ 𝑦 ) ∪ ( ( 𝐹𝐵 ) “ 𝑦 ) ) = ( ( ( 𝐹𝑦 ) ∩ 𝐴 ) ∪ ( ( 𝐹𝑦 ) ∩ 𝐵 ) ) )
15 11 14 syl ( 𝜑 → ( ( ( 𝐹𝐴 ) “ 𝑦 ) ∪ ( ( 𝐹𝐵 ) “ 𝑦 ) ) = ( ( ( 𝐹𝑦 ) ∩ 𝐴 ) ∪ ( ( 𝐹𝑦 ) ∩ 𝐵 ) ) )
16 10 15 eqtr4id ( 𝜑 → ( ( 𝐹𝑦 ) ∩ ( 𝐴𝐵 ) ) = ( ( ( 𝐹𝐴 ) “ 𝑦 ) ∪ ( ( 𝐹𝐵 ) “ 𝑦 ) ) )
17 imassrn ( 𝐹𝑦 ) ⊆ ran 𝐹
18 dfdm4 dom 𝐹 = ran 𝐹
19 fdm ( 𝐹 : 𝑋𝑌 → dom 𝐹 = 𝑋 )
20 18 19 eqtr3id ( 𝐹 : 𝑋𝑌 → ran 𝐹 = 𝑋 )
21 17 20 sseqtrid ( 𝐹 : 𝑋𝑌 → ( 𝐹𝑦 ) ⊆ 𝑋 )
22 6 21 syl ( 𝜑 → ( 𝐹𝑦 ) ⊆ 𝑋 )
23 df-ss ( ( 𝐹𝑦 ) ⊆ 𝑋 ↔ ( ( 𝐹𝑦 ) ∩ 𝑋 ) = ( 𝐹𝑦 ) )
24 22 23 sylib ( 𝜑 → ( ( 𝐹𝑦 ) ∩ 𝑋 ) = ( 𝐹𝑦 ) )
25 9 16 24 3eqtr3rd ( 𝜑 → ( 𝐹𝑦 ) = ( ( ( 𝐹𝐴 ) “ 𝑦 ) ∪ ( ( 𝐹𝐵 ) “ 𝑦 ) ) )
26 25 adantr ( ( 𝜑𝑦 ∈ ( Clsd ‘ 𝐾 ) ) → ( 𝐹𝑦 ) = ( ( ( 𝐹𝐴 ) “ 𝑦 ) ∪ ( ( 𝐹𝐵 ) “ 𝑦 ) ) )
27 cnclima ( ( ( 𝐹𝐴 ) ∈ ( ( 𝐽t 𝐴 ) Cn 𝐾 ) ∧ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ) → ( ( 𝐹𝐴 ) “ 𝑦 ) ∈ ( Clsd ‘ ( 𝐽t 𝐴 ) ) )
28 7 27 sylan ( ( 𝜑𝑦 ∈ ( Clsd ‘ 𝐾 ) ) → ( ( 𝐹𝐴 ) “ 𝑦 ) ∈ ( Clsd ‘ ( 𝐽t 𝐴 ) ) )
29 restcldr ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ ( ( 𝐹𝐴 ) “ 𝑦 ) ∈ ( Clsd ‘ ( 𝐽t 𝐴 ) ) ) → ( ( 𝐹𝐴 ) “ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) )
30 3 28 29 syl2an2r ( ( 𝜑𝑦 ∈ ( Clsd ‘ 𝐾 ) ) → ( ( 𝐹𝐴 ) “ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) )
31 cnclima ( ( ( 𝐹𝐵 ) ∈ ( ( 𝐽t 𝐵 ) Cn 𝐾 ) ∧ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ) → ( ( 𝐹𝐵 ) “ 𝑦 ) ∈ ( Clsd ‘ ( 𝐽t 𝐵 ) ) )
32 8 31 sylan ( ( 𝜑𝑦 ∈ ( Clsd ‘ 𝐾 ) ) → ( ( 𝐹𝐵 ) “ 𝑦 ) ∈ ( Clsd ‘ ( 𝐽t 𝐵 ) ) )
33 restcldr ( ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) ∧ ( ( 𝐹𝐵 ) “ 𝑦 ) ∈ ( Clsd ‘ ( 𝐽t 𝐵 ) ) ) → ( ( 𝐹𝐵 ) “ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) )
34 4 32 33 syl2an2r ( ( 𝜑𝑦 ∈ ( Clsd ‘ 𝐾 ) ) → ( ( 𝐹𝐵 ) “ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) )
35 uncld ( ( ( ( 𝐹𝐴 ) “ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ∧ ( ( 𝐹𝐵 ) “ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) → ( ( ( 𝐹𝐴 ) “ 𝑦 ) ∪ ( ( 𝐹𝐵 ) “ 𝑦 ) ) ∈ ( Clsd ‘ 𝐽 ) )
36 30 34 35 syl2anc ( ( 𝜑𝑦 ∈ ( Clsd ‘ 𝐾 ) ) → ( ( ( 𝐹𝐴 ) “ 𝑦 ) ∪ ( ( 𝐹𝐵 ) “ 𝑦 ) ) ∈ ( Clsd ‘ 𝐽 ) )
37 26 36 eqeltrd ( ( 𝜑𝑦 ∈ ( Clsd ‘ 𝐾 ) ) → ( 𝐹𝑦 ) ∈ ( Clsd ‘ 𝐽 ) )
38 37 ralrimiva ( 𝜑 → ∀ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ( 𝐹𝑦 ) ∈ ( Clsd ‘ 𝐽 ) )
39 cldrcl ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Top )
40 3 39 syl ( 𝜑𝐽 ∈ Top )
41 cntop2 ( ( 𝐹𝐴 ) ∈ ( ( 𝐽t 𝐴 ) Cn 𝐾 ) → 𝐾 ∈ Top )
42 7 41 syl ( 𝜑𝐾 ∈ Top )
43 1 toptopon ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
44 2 toptopon ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝑌 ) )
45 iscncl ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋𝑌 ∧ ∀ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ( 𝐹𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) ) )
46 43 44 45 syl2anb ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋𝑌 ∧ ∀ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ( 𝐹𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) ) )
47 40 42 46 syl2anc ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋𝑌 ∧ ∀ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ( 𝐹𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) ) )
48 6 38 47 mpbir2and ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐾 ) )