Step |
Hyp |
Ref |
Expression |
1 |
|
paste.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
paste.2 |
⊢ 𝑌 = ∪ 𝐾 |
3 |
|
paste.4 |
⊢ ( 𝜑 → 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) |
4 |
|
paste.5 |
⊢ ( 𝜑 → 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) |
5 |
|
paste.6 |
⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) = 𝑋 ) |
6 |
|
paste.7 |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
7 |
|
paste.8 |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ) |
8 |
|
paste.9 |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) ∈ ( ( 𝐽 ↾t 𝐵 ) Cn 𝐾 ) ) |
9 |
5
|
ineq2d |
⊢ ( 𝜑 → ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( 𝐴 ∪ 𝐵 ) ) = ( ( ◡ 𝐹 “ 𝑦 ) ∩ 𝑋 ) ) |
10 |
|
indi |
⊢ ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( 𝐴 ∪ 𝐵 ) ) = ( ( ( ◡ 𝐹 “ 𝑦 ) ∩ 𝐴 ) ∪ ( ( ◡ 𝐹 “ 𝑦 ) ∩ 𝐵 ) ) |
11 |
6
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
12 |
|
respreima |
⊢ ( Fun 𝐹 → ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑦 ) = ( ( ◡ 𝐹 “ 𝑦 ) ∩ 𝐴 ) ) |
13 |
|
respreima |
⊢ ( Fun 𝐹 → ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑦 ) = ( ( ◡ 𝐹 “ 𝑦 ) ∩ 𝐵 ) ) |
14 |
12 13
|
uneq12d |
⊢ ( Fun 𝐹 → ( ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑦 ) ∪ ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑦 ) ) = ( ( ( ◡ 𝐹 “ 𝑦 ) ∩ 𝐴 ) ∪ ( ( ◡ 𝐹 “ 𝑦 ) ∩ 𝐵 ) ) ) |
15 |
11 14
|
syl |
⊢ ( 𝜑 → ( ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑦 ) ∪ ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑦 ) ) = ( ( ( ◡ 𝐹 “ 𝑦 ) ∩ 𝐴 ) ∪ ( ( ◡ 𝐹 “ 𝑦 ) ∩ 𝐵 ) ) ) |
16 |
10 15
|
eqtr4id |
⊢ ( 𝜑 → ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( 𝐴 ∪ 𝐵 ) ) = ( ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑦 ) ∪ ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑦 ) ) ) |
17 |
|
imassrn |
⊢ ( ◡ 𝐹 “ 𝑦 ) ⊆ ran ◡ 𝐹 |
18 |
|
dfdm4 |
⊢ dom 𝐹 = ran ◡ 𝐹 |
19 |
|
fdm |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → dom 𝐹 = 𝑋 ) |
20 |
18 19
|
eqtr3id |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → ran ◡ 𝐹 = 𝑋 ) |
21 |
17 20
|
sseqtrid |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → ( ◡ 𝐹 “ 𝑦 ) ⊆ 𝑋 ) |
22 |
6 21
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑦 ) ⊆ 𝑋 ) |
23 |
|
df-ss |
⊢ ( ( ◡ 𝐹 “ 𝑦 ) ⊆ 𝑋 ↔ ( ( ◡ 𝐹 “ 𝑦 ) ∩ 𝑋 ) = ( ◡ 𝐹 “ 𝑦 ) ) |
24 |
22 23
|
sylib |
⊢ ( 𝜑 → ( ( ◡ 𝐹 “ 𝑦 ) ∩ 𝑋 ) = ( ◡ 𝐹 “ 𝑦 ) ) |
25 |
9 16 24
|
3eqtr3rd |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑦 ) = ( ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑦 ) ∪ ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑦 ) ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ) → ( ◡ 𝐹 “ 𝑦 ) = ( ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑦 ) ∪ ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑦 ) ) ) |
27 |
|
cnclima |
⊢ ( ( ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ∧ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ) → ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑦 ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐴 ) ) ) |
28 |
7 27
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ) → ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑦 ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐴 ) ) ) |
29 |
|
restcldr |
⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑦 ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐴 ) ) ) → ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) |
30 |
3 28 29
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ) → ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) |
31 |
|
cnclima |
⊢ ( ( ( 𝐹 ↾ 𝐵 ) ∈ ( ( 𝐽 ↾t 𝐵 ) Cn 𝐾 ) ∧ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ) → ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑦 ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐵 ) ) ) |
32 |
8 31
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ) → ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑦 ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐵 ) ) ) |
33 |
|
restcldr |
⊢ ( ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) ∧ ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑦 ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐵 ) ) ) → ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) |
34 |
4 32 33
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ) → ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) |
35 |
|
uncld |
⊢ ( ( ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ∧ ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) → ( ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑦 ) ∪ ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑦 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
36 |
30 34 35
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ) → ( ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑦 ) ∪ ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑦 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
37 |
26 36
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ) → ( ◡ 𝐹 “ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) |
38 |
37
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) |
39 |
|
cldrcl |
⊢ ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Top ) |
40 |
3 39
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
41 |
|
cntop2 |
⊢ ( ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) → 𝐾 ∈ Top ) |
42 |
7 41
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
43 |
1
|
toptopon |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
44 |
2
|
toptopon |
⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
45 |
|
iscncl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) ) ) |
46 |
43 44 45
|
syl2anb |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) ) ) |
47 |
40 42 46
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) ) ) |
48 |
6 38 47
|
mpbir2and |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |