Metamath Proof Explorer


Theorem restcldr

Description: A set which is closed in the subspace topology induced by a closed set is closed in the original topology. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion restcldr ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ∈ ( Clsd ‘ ( 𝐽t 𝐴 ) ) ) → 𝐵 ∈ ( Clsd ‘ 𝐽 ) )

Proof

Step Hyp Ref Expression
1 cldrcl ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Top )
2 eqid 𝐽 = 𝐽
3 2 cldss ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → 𝐴 𝐽 )
4 2 restcld ( ( 𝐽 ∈ Top ∧ 𝐴 𝐽 ) → ( 𝐵 ∈ ( Clsd ‘ ( 𝐽t 𝐴 ) ) ↔ ∃ 𝑣 ∈ ( Clsd ‘ 𝐽 ) 𝐵 = ( 𝑣𝐴 ) ) )
5 1 3 4 syl2anc ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → ( 𝐵 ∈ ( Clsd ‘ ( 𝐽t 𝐴 ) ) ↔ ∃ 𝑣 ∈ ( Clsd ‘ 𝐽 ) 𝐵 = ( 𝑣𝐴 ) ) )
6 incld ( ( 𝑣 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑣𝐴 ) ∈ ( Clsd ‘ 𝐽 ) )
7 6 ancoms ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑣 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑣𝐴 ) ∈ ( Clsd ‘ 𝐽 ) )
8 eleq1 ( 𝐵 = ( 𝑣𝐴 ) → ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑣𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) )
9 7 8 syl5ibrcom ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑣 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐵 = ( 𝑣𝐴 ) → 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) )
10 9 rexlimdva ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → ( ∃ 𝑣 ∈ ( Clsd ‘ 𝐽 ) 𝐵 = ( 𝑣𝐴 ) → 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) )
11 5 10 sylbid ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → ( 𝐵 ∈ ( Clsd ‘ ( 𝐽t 𝐴 ) ) → 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) )
12 11 imp ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ∈ ( Clsd ‘ ( 𝐽t 𝐴 ) ) ) → 𝐵 ∈ ( Clsd ‘ 𝐽 ) )