Metamath Proof Explorer


Theorem restabs

Description: Equivalence of being a subspace of a subspace and being a subspace of the original. (Contributed by Jeff Hankins, 11-Jul-2009) (Proof shortened by Mario Carneiro, 1-May-2015)

Ref Expression
Assertion restabs ( ( 𝐽𝑉𝑆𝑇𝑇𝑊 ) → ( ( 𝐽t 𝑇 ) ↾t 𝑆 ) = ( 𝐽t 𝑆 ) )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝐽𝑉𝑆𝑇𝑇𝑊 ) → 𝐽𝑉 )
2 simp3 ( ( 𝐽𝑉𝑆𝑇𝑇𝑊 ) → 𝑇𝑊 )
3 ssexg ( ( 𝑆𝑇𝑇𝑊 ) → 𝑆 ∈ V )
4 3 3adant1 ( ( 𝐽𝑉𝑆𝑇𝑇𝑊 ) → 𝑆 ∈ V )
5 restco ( ( 𝐽𝑉𝑇𝑊𝑆 ∈ V ) → ( ( 𝐽t 𝑇 ) ↾t 𝑆 ) = ( 𝐽t ( 𝑇𝑆 ) ) )
6 1 2 4 5 syl3anc ( ( 𝐽𝑉𝑆𝑇𝑇𝑊 ) → ( ( 𝐽t 𝑇 ) ↾t 𝑆 ) = ( 𝐽t ( 𝑇𝑆 ) ) )
7 simp2 ( ( 𝐽𝑉𝑆𝑇𝑇𝑊 ) → 𝑆𝑇 )
8 sseqin2 ( 𝑆𝑇 ↔ ( 𝑇𝑆 ) = 𝑆 )
9 7 8 sylib ( ( 𝐽𝑉𝑆𝑇𝑇𝑊 ) → ( 𝑇𝑆 ) = 𝑆 )
10 9 oveq2d ( ( 𝐽𝑉𝑆𝑇𝑇𝑊 ) → ( 𝐽t ( 𝑇𝑆 ) ) = ( 𝐽t 𝑆 ) )
11 6 10 eqtrd ( ( 𝐽𝑉𝑆𝑇𝑇𝑊 ) → ( ( 𝐽t 𝑇 ) ↾t 𝑆 ) = ( 𝐽t 𝑆 ) )