Metamath Proof Explorer


Theorem htpycc

Description: Concatenate two homotopies. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses htpycc.1 N=xX,y01ify12xL2yxM2y1
htpycc.2 φJTopOnX
htpycc.4 φFJCnK
htpycc.5 φGJCnK
htpycc.6 φHJCnK
htpycc.7 φLFJHtpyKG
htpycc.8 φMGJHtpyKH
Assertion htpycc φNFJHtpyKH

Proof

Step Hyp Ref Expression
1 htpycc.1 N=xX,y01ify12xL2yxM2y1
2 htpycc.2 φJTopOnX
3 htpycc.4 φFJCnK
4 htpycc.5 φGJCnK
5 htpycc.6 φHJCnK
6 htpycc.7 φLFJHtpyKG
7 htpycc.8 φMGJHtpyKH
8 iitopon IITopOn01
9 8 a1i φIITopOn01
10 eqid topGenran.=topGenran.
11 eqid topGenran.𝑡012=topGenran.𝑡012
12 eqid topGenran.𝑡121=topGenran.𝑡121
13 dfii2 II=topGenran.𝑡01
14 0red φ0
15 1red φ1
16 halfre 12
17 halfge0 012
18 1re 1
19 halflt1 12<1
20 16 18 19 ltleii 121
21 elicc01 120112012121
22 16 17 20 21 mpbir3an 1201
23 22 a1i φ1201
24 2 3 4 6 htpyi φsXsL0=FssL1=Gs
25 24 simprd φsXsL1=Gs
26 2 4 5 7 htpyi φsXsM0=GssM1=Hs
27 26 simpld φsXsM0=Gs
28 25 27 eqtr4d φsXsL1=sM0
29 28 ralrimiva φsXsL1=sM0
30 oveq1 s=xsL1=xL1
31 oveq1 s=xsM0=xM0
32 30 31 eqeq12d s=xsL1=sM0xL1=xM0
33 32 rspccva sXsL1=sM0xXxL1=xM0
34 29 33 sylan φxXxL1=xM0
35 34 adantrl φy=12xXxL1=xM0
36 simprl φy=12xXy=12
37 36 oveq2d φy=12xX2y=212
38 2cn 2
39 2ne0 20
40 38 39 recidi 212=1
41 37 40 eqtrdi φy=12xX2y=1
42 41 oveq2d φy=12xXxL2y=xL1
43 41 oveq1d φy=12xX2y1=11
44 1m1e0 11=0
45 43 44 eqtrdi φy=12xX2y1=0
46 45 oveq2d φy=12xXxM2y1=xM0
47 35 42 46 3eqtr4d φy=12xXxL2y=xM2y1
48 retopon topGenran.TopOn
49 0re 0
50 iccssre 012012
51 49 16 50 mp2an 012
52 resttopon topGenran.TopOn012topGenran.𝑡012TopOn012
53 48 51 52 mp2an topGenran.𝑡012TopOn012
54 53 a1i φtopGenran.𝑡012TopOn012
55 54 2 cnmpt2nd φy012,xXxtopGenran.𝑡012×tJCnJ
56 54 2 cnmpt1st φy012,xXytopGenran.𝑡012×tJCntopGenran.𝑡012
57 11 iihalf1cn z0122ztopGenran.𝑡012CnII
58 57 a1i φz0122ztopGenran.𝑡012CnII
59 oveq2 z=y2z=2y
60 54 2 56 54 58 59 cnmpt21 φy012,xX2ytopGenran.𝑡012×tJCnII
61 2 3 4 htpycn φFJHtpyKGJ×tIICnK
62 61 6 sseldd φLJ×tIICnK
63 54 2 55 60 62 cnmpt22f φy012,xXxL2ytopGenran.𝑡012×tJCnK
64 iccssre 121121
65 16 18 64 mp2an 121
66 resttopon topGenran.TopOn121topGenran.𝑡121TopOn121
67 48 65 66 mp2an topGenran.𝑡121TopOn121
68 67 a1i φtopGenran.𝑡121TopOn121
69 68 2 cnmpt2nd φy121,xXxtopGenran.𝑡121×tJCnJ
70 68 2 cnmpt1st φy121,xXytopGenran.𝑡121×tJCntopGenran.𝑡121
71 12 iihalf2cn z1212z1topGenran.𝑡121CnII
72 71 a1i φz1212z1topGenran.𝑡121CnII
73 59 oveq1d z=y2z1=2y1
74 68 2 70 68 72 73 cnmpt21 φy121,xX2y1topGenran.𝑡121×tJCnII
75 2 4 5 htpycn φGJHtpyKHJ×tIICnK
76 75 7 sseldd φMJ×tIICnK
77 68 2 69 74 76 cnmpt22f φy121,xXxM2y1topGenran.𝑡121×tJCnK
78 10 11 12 13 14 15 23 2 47 63 77 cnmpopc φy01,xXify12xL2yxM2y1II×tJCnK
79 9 2 78 cnmptcom φxX,y01ify12xL2yxM2y1J×tIICnK
80 1 79 eqeltrid φNJ×tIICnK
81 simpr φsXsX
82 0elunit 001
83 simpr x=sy=0y=0
84 83 17 eqbrtrdi x=sy=0y12
85 84 iftrued x=sy=0ify12xL2yxM2y1=xL2y
86 simpl x=sy=0x=s
87 83 oveq2d x=sy=02y=20
88 2t0e0 20=0
89 87 88 eqtrdi x=sy=02y=0
90 86 89 oveq12d x=sy=0xL2y=sL0
91 85 90 eqtrd x=sy=0ify12xL2yxM2y1=sL0
92 ovex sL0V
93 91 1 92 ovmpoa sX001sN0=sL0
94 81 82 93 sylancl φsXsN0=sL0
95 24 simpld φsXsL0=Fs
96 94 95 eqtrd φsXsN0=Fs
97 1elunit 101
98 16 18 ltnlei 12<1¬112
99 19 98 mpbi ¬112
100 simpr x=sy=1y=1
101 100 breq1d x=sy=1y12112
102 99 101 mtbiri x=sy=1¬y12
103 102 iffalsed x=sy=1ify12xL2yxM2y1=xM2y1
104 simpl x=sy=1x=s
105 100 oveq2d x=sy=12y=21
106 2t1e2 21=2
107 105 106 eqtrdi x=sy=12y=2
108 107 oveq1d x=sy=12y1=21
109 2m1e1 21=1
110 108 109 eqtrdi x=sy=12y1=1
111 104 110 oveq12d x=sy=1xM2y1=sM1
112 103 111 eqtrd x=sy=1ify12xL2yxM2y1=sM1
113 ovex sM1V
114 112 1 113 ovmpoa sX101sN1=sM1
115 81 97 114 sylancl φsXsN1=sM1
116 26 simprd φsXsM1=Hs
117 115 116 eqtrd φsXsN1=Hs
118 2 3 5 80 96 117 ishtpyd φNFJHtpyKH