Metamath Proof Explorer


Theorem htpyi

Description: A homotopy evaluated at its endpoints. (Contributed by Mario Carneiro, 22-Feb-2015)

Ref Expression
Hypotheses ishtpy.1 φJTopOnX
ishtpy.3 φFJCnK
ishtpy.4 φGJCnK
htpyi.1 φHFJHtpyKG
Assertion htpyi φAXAH0=FAAH1=GA

Proof

Step Hyp Ref Expression
1 ishtpy.1 φJTopOnX
2 ishtpy.3 φFJCnK
3 ishtpy.4 φGJCnK
4 htpyi.1 φHFJHtpyKG
5 1 2 3 ishtpy φHFJHtpyKGHJ×tIICnKsXsH0=FssH1=Gs
6 4 5 mpbid φHJ×tIICnKsXsH0=FssH1=Gs
7 6 simprd φsXsH0=FssH1=Gs
8 oveq1 s=AsH0=AH0
9 fveq2 s=AFs=FA
10 8 9 eqeq12d s=AsH0=FsAH0=FA
11 oveq1 s=AsH1=AH1
12 fveq2 s=AGs=GA
13 11 12 eqeq12d s=AsH1=GsAH1=GA
14 10 13 anbi12d s=AsH0=FssH1=GsAH0=FAAH1=GA
15 14 rspccva sXsH0=FssH1=GsAXAH0=FAAH1=GA
16 7 15 sylan φAXAH0=FAAH1=GA