Database
BASIC TOPOLOGY
Metric spaces
Path homotopy
htpyi
Next ⟩
ishtpyd
Metamath Proof Explorer
Ascii
Unicode
Theorem
htpyi
Description:
A homotopy evaluated at its endpoints.
(Contributed by
Mario Carneiro
, 22-Feb-2015)
Ref
Expression
Hypotheses
ishtpy.1
⊢
φ
→
J
∈
TopOn
⁡
X
ishtpy.3
⊢
φ
→
F
∈
J
Cn
K
ishtpy.4
⊢
φ
→
G
∈
J
Cn
K
htpyi.1
⊢
φ
→
H
∈
F
J
Htpy
K
G
Assertion
htpyi
⊢
φ
∧
A
∈
X
→
A
H
0
=
F
⁡
A
∧
A
H
1
=
G
⁡
A
Proof
Step
Hyp
Ref
Expression
1
ishtpy.1
⊢
φ
→
J
∈
TopOn
⁡
X
2
ishtpy.3
⊢
φ
→
F
∈
J
Cn
K
3
ishtpy.4
⊢
φ
→
G
∈
J
Cn
K
4
htpyi.1
⊢
φ
→
H
∈
F
J
Htpy
K
G
5
1
2
3
ishtpy
⊢
φ
→
H
∈
F
J
Htpy
K
G
↔
H
∈
J
×
t
II
Cn
K
∧
∀
s
∈
X
s
H
0
=
F
⁡
s
∧
s
H
1
=
G
⁡
s
6
4
5
mpbid
⊢
φ
→
H
∈
J
×
t
II
Cn
K
∧
∀
s
∈
X
s
H
0
=
F
⁡
s
∧
s
H
1
=
G
⁡
s
7
6
simprd
⊢
φ
→
∀
s
∈
X
s
H
0
=
F
⁡
s
∧
s
H
1
=
G
⁡
s
8
oveq1
⊢
s
=
A
→
s
H
0
=
A
H
0
9
fveq2
⊢
s
=
A
→
F
⁡
s
=
F
⁡
A
10
8
9
eqeq12d
⊢
s
=
A
→
s
H
0
=
F
⁡
s
↔
A
H
0
=
F
⁡
A
11
oveq1
⊢
s
=
A
→
s
H
1
=
A
H
1
12
fveq2
⊢
s
=
A
→
G
⁡
s
=
G
⁡
A
13
11
12
eqeq12d
⊢
s
=
A
→
s
H
1
=
G
⁡
s
↔
A
H
1
=
G
⁡
A
14
10
13
anbi12d
⊢
s
=
A
→
s
H
0
=
F
⁡
s
∧
s
H
1
=
G
⁡
s
↔
A
H
0
=
F
⁡
A
∧
A
H
1
=
G
⁡
A
15
14
rspccva
⊢
∀
s
∈
X
s
H
0
=
F
⁡
s
∧
s
H
1
=
G
⁡
s
∧
A
∈
X
→
A
H
0
=
F
⁡
A
∧
A
H
1
=
G
⁡
A
16
7
15
sylan
⊢
φ
∧
A
∈
X
→
A
H
0
=
F
⁡
A
∧
A
H
1
=
G
⁡
A