Metamath Proof Explorer


Theorem htpyi

Description: A homotopy evaluated at its endpoints. (Contributed by Mario Carneiro, 22-Feb-2015)

Ref Expression
Hypotheses ishtpy.1 ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
ishtpy.3 ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
ishtpy.4 ( 𝜑𝐺 ∈ ( 𝐽 Cn 𝐾 ) )
htpyi.1 ( 𝜑𝐻 ∈ ( 𝐹 ( 𝐽 Htpy 𝐾 ) 𝐺 ) )
Assertion htpyi ( ( 𝜑𝐴𝑋 ) → ( ( 𝐴 𝐻 0 ) = ( 𝐹𝐴 ) ∧ ( 𝐴 𝐻 1 ) = ( 𝐺𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 ishtpy.1 ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
2 ishtpy.3 ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
3 ishtpy.4 ( 𝜑𝐺 ∈ ( 𝐽 Cn 𝐾 ) )
4 htpyi.1 ( 𝜑𝐻 ∈ ( 𝐹 ( 𝐽 Htpy 𝐾 ) 𝐺 ) )
5 1 2 3 ishtpy ( 𝜑 → ( 𝐻 ∈ ( 𝐹 ( 𝐽 Htpy 𝐾 ) 𝐺 ) ↔ ( 𝐻 ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∧ ∀ 𝑠𝑋 ( ( 𝑠 𝐻 0 ) = ( 𝐹𝑠 ) ∧ ( 𝑠 𝐻 1 ) = ( 𝐺𝑠 ) ) ) ) )
6 4 5 mpbid ( 𝜑 → ( 𝐻 ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∧ ∀ 𝑠𝑋 ( ( 𝑠 𝐻 0 ) = ( 𝐹𝑠 ) ∧ ( 𝑠 𝐻 1 ) = ( 𝐺𝑠 ) ) ) )
7 6 simprd ( 𝜑 → ∀ 𝑠𝑋 ( ( 𝑠 𝐻 0 ) = ( 𝐹𝑠 ) ∧ ( 𝑠 𝐻 1 ) = ( 𝐺𝑠 ) ) )
8 oveq1 ( 𝑠 = 𝐴 → ( 𝑠 𝐻 0 ) = ( 𝐴 𝐻 0 ) )
9 fveq2 ( 𝑠 = 𝐴 → ( 𝐹𝑠 ) = ( 𝐹𝐴 ) )
10 8 9 eqeq12d ( 𝑠 = 𝐴 → ( ( 𝑠 𝐻 0 ) = ( 𝐹𝑠 ) ↔ ( 𝐴 𝐻 0 ) = ( 𝐹𝐴 ) ) )
11 oveq1 ( 𝑠 = 𝐴 → ( 𝑠 𝐻 1 ) = ( 𝐴 𝐻 1 ) )
12 fveq2 ( 𝑠 = 𝐴 → ( 𝐺𝑠 ) = ( 𝐺𝐴 ) )
13 11 12 eqeq12d ( 𝑠 = 𝐴 → ( ( 𝑠 𝐻 1 ) = ( 𝐺𝑠 ) ↔ ( 𝐴 𝐻 1 ) = ( 𝐺𝐴 ) ) )
14 10 13 anbi12d ( 𝑠 = 𝐴 → ( ( ( 𝑠 𝐻 0 ) = ( 𝐹𝑠 ) ∧ ( 𝑠 𝐻 1 ) = ( 𝐺𝑠 ) ) ↔ ( ( 𝐴 𝐻 0 ) = ( 𝐹𝐴 ) ∧ ( 𝐴 𝐻 1 ) = ( 𝐺𝐴 ) ) ) )
15 14 rspccva ( ( ∀ 𝑠𝑋 ( ( 𝑠 𝐻 0 ) = ( 𝐹𝑠 ) ∧ ( 𝑠 𝐻 1 ) = ( 𝐺𝑠 ) ) ∧ 𝐴𝑋 ) → ( ( 𝐴 𝐻 0 ) = ( 𝐹𝐴 ) ∧ ( 𝐴 𝐻 1 ) = ( 𝐺𝐴 ) ) )
16 7 15 sylan ( ( 𝜑𝐴𝑋 ) → ( ( 𝐴 𝐻 0 ) = ( 𝐹𝐴 ) ∧ ( 𝐴 𝐻 1 ) = ( 𝐺𝐴 ) ) )