Step |
Hyp |
Ref |
Expression |
1 |
|
ishtpy.1 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
2 |
|
ishtpy.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
3 |
|
ishtpy.4 |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ) |
4 |
|
htpyi.1 |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝐹 ( 𝐽 Htpy 𝐾 ) 𝐺 ) ) |
5 |
1 2 3
|
ishtpy |
⊢ ( 𝜑 → ( 𝐻 ∈ ( 𝐹 ( 𝐽 Htpy 𝐾 ) 𝐺 ) ↔ ( 𝐻 ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∧ ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 𝐻 0 ) = ( 𝐹 ‘ 𝑠 ) ∧ ( 𝑠 𝐻 1 ) = ( 𝐺 ‘ 𝑠 ) ) ) ) ) |
6 |
4 5
|
mpbid |
⊢ ( 𝜑 → ( 𝐻 ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∧ ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 𝐻 0 ) = ( 𝐹 ‘ 𝑠 ) ∧ ( 𝑠 𝐻 1 ) = ( 𝐺 ‘ 𝑠 ) ) ) ) |
7 |
6
|
simprd |
⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 𝐻 0 ) = ( 𝐹 ‘ 𝑠 ) ∧ ( 𝑠 𝐻 1 ) = ( 𝐺 ‘ 𝑠 ) ) ) |
8 |
|
oveq1 |
⊢ ( 𝑠 = 𝐴 → ( 𝑠 𝐻 0 ) = ( 𝐴 𝐻 0 ) ) |
9 |
|
fveq2 |
⊢ ( 𝑠 = 𝐴 → ( 𝐹 ‘ 𝑠 ) = ( 𝐹 ‘ 𝐴 ) ) |
10 |
8 9
|
eqeq12d |
⊢ ( 𝑠 = 𝐴 → ( ( 𝑠 𝐻 0 ) = ( 𝐹 ‘ 𝑠 ) ↔ ( 𝐴 𝐻 0 ) = ( 𝐹 ‘ 𝐴 ) ) ) |
11 |
|
oveq1 |
⊢ ( 𝑠 = 𝐴 → ( 𝑠 𝐻 1 ) = ( 𝐴 𝐻 1 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑠 = 𝐴 → ( 𝐺 ‘ 𝑠 ) = ( 𝐺 ‘ 𝐴 ) ) |
13 |
11 12
|
eqeq12d |
⊢ ( 𝑠 = 𝐴 → ( ( 𝑠 𝐻 1 ) = ( 𝐺 ‘ 𝑠 ) ↔ ( 𝐴 𝐻 1 ) = ( 𝐺 ‘ 𝐴 ) ) ) |
14 |
10 13
|
anbi12d |
⊢ ( 𝑠 = 𝐴 → ( ( ( 𝑠 𝐻 0 ) = ( 𝐹 ‘ 𝑠 ) ∧ ( 𝑠 𝐻 1 ) = ( 𝐺 ‘ 𝑠 ) ) ↔ ( ( 𝐴 𝐻 0 ) = ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐴 𝐻 1 ) = ( 𝐺 ‘ 𝐴 ) ) ) ) |
15 |
14
|
rspccva |
⊢ ( ( ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 𝐻 0 ) = ( 𝐹 ‘ 𝑠 ) ∧ ( 𝑠 𝐻 1 ) = ( 𝐺 ‘ 𝑠 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐴 𝐻 0 ) = ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐴 𝐻 1 ) = ( 𝐺 ‘ 𝐴 ) ) ) |
16 |
7 15
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐴 𝐻 0 ) = ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐴 𝐻 1 ) = ( 𝐺 ‘ 𝐴 ) ) ) |