Metamath Proof Explorer


Theorem ishtpyd

Description: Deduction for membership in the class of homotopies. (Contributed by Mario Carneiro, 22-Feb-2015)

Ref Expression
Hypotheses ishtpy.1 ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
ishtpy.3 ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
ishtpy.4 ( 𝜑𝐺 ∈ ( 𝐽 Cn 𝐾 ) )
ishtpyd.1 ( 𝜑𝐻 ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) )
ishtpyd.2 ( ( 𝜑𝑠𝑋 ) → ( 𝑠 𝐻 0 ) = ( 𝐹𝑠 ) )
ishtpyd.3 ( ( 𝜑𝑠𝑋 ) → ( 𝑠 𝐻 1 ) = ( 𝐺𝑠 ) )
Assertion ishtpyd ( 𝜑𝐻 ∈ ( 𝐹 ( 𝐽 Htpy 𝐾 ) 𝐺 ) )

Proof

Step Hyp Ref Expression
1 ishtpy.1 ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
2 ishtpy.3 ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
3 ishtpy.4 ( 𝜑𝐺 ∈ ( 𝐽 Cn 𝐾 ) )
4 ishtpyd.1 ( 𝜑𝐻 ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) )
5 ishtpyd.2 ( ( 𝜑𝑠𝑋 ) → ( 𝑠 𝐻 0 ) = ( 𝐹𝑠 ) )
6 ishtpyd.3 ( ( 𝜑𝑠𝑋 ) → ( 𝑠 𝐻 1 ) = ( 𝐺𝑠 ) )
7 5 6 jca ( ( 𝜑𝑠𝑋 ) → ( ( 𝑠 𝐻 0 ) = ( 𝐹𝑠 ) ∧ ( 𝑠 𝐻 1 ) = ( 𝐺𝑠 ) ) )
8 7 ralrimiva ( 𝜑 → ∀ 𝑠𝑋 ( ( 𝑠 𝐻 0 ) = ( 𝐹𝑠 ) ∧ ( 𝑠 𝐻 1 ) = ( 𝐺𝑠 ) ) )
9 1 2 3 ishtpy ( 𝜑 → ( 𝐻 ∈ ( 𝐹 ( 𝐽 Htpy 𝐾 ) 𝐺 ) ↔ ( 𝐻 ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∧ ∀ 𝑠𝑋 ( ( 𝑠 𝐻 0 ) = ( 𝐹𝑠 ) ∧ ( 𝑠 𝐻 1 ) = ( 𝐺𝑠 ) ) ) ) )
10 4 8 9 mpbir2and ( 𝜑𝐻 ∈ ( 𝐹 ( 𝐽 Htpy 𝐾 ) 𝐺 ) )