Step |
Hyp |
Ref |
Expression |
1 |
|
ishtpy.1 |
|- ( ph -> J e. ( TopOn ` X ) ) |
2 |
|
ishtpy.3 |
|- ( ph -> F e. ( J Cn K ) ) |
3 |
|
ishtpy.4 |
|- ( ph -> G e. ( J Cn K ) ) |
4 |
|
ishtpyd.1 |
|- ( ph -> H e. ( ( J tX II ) Cn K ) ) |
5 |
|
ishtpyd.2 |
|- ( ( ph /\ s e. X ) -> ( s H 0 ) = ( F ` s ) ) |
6 |
|
ishtpyd.3 |
|- ( ( ph /\ s e. X ) -> ( s H 1 ) = ( G ` s ) ) |
7 |
5 6
|
jca |
|- ( ( ph /\ s e. X ) -> ( ( s H 0 ) = ( F ` s ) /\ ( s H 1 ) = ( G ` s ) ) ) |
8 |
7
|
ralrimiva |
|- ( ph -> A. s e. X ( ( s H 0 ) = ( F ` s ) /\ ( s H 1 ) = ( G ` s ) ) ) |
9 |
1 2 3
|
ishtpy |
|- ( ph -> ( H e. ( F ( J Htpy K ) G ) <-> ( H e. ( ( J tX II ) Cn K ) /\ A. s e. X ( ( s H 0 ) = ( F ` s ) /\ ( s H 1 ) = ( G ` s ) ) ) ) ) |
10 |
4 8 9
|
mpbir2and |
|- ( ph -> H e. ( F ( J Htpy K ) G ) ) |