Metamath Proof Explorer


Theorem ishtpyd

Description: Deduction for membership in the class of homotopies. (Contributed by Mario Carneiro, 22-Feb-2015)

Ref Expression
Hypotheses ishtpy.1
|- ( ph -> J e. ( TopOn ` X ) )
ishtpy.3
|- ( ph -> F e. ( J Cn K ) )
ishtpy.4
|- ( ph -> G e. ( J Cn K ) )
ishtpyd.1
|- ( ph -> H e. ( ( J tX II ) Cn K ) )
ishtpyd.2
|- ( ( ph /\ s e. X ) -> ( s H 0 ) = ( F ` s ) )
ishtpyd.3
|- ( ( ph /\ s e. X ) -> ( s H 1 ) = ( G ` s ) )
Assertion ishtpyd
|- ( ph -> H e. ( F ( J Htpy K ) G ) )

Proof

Step Hyp Ref Expression
1 ishtpy.1
 |-  ( ph -> J e. ( TopOn ` X ) )
2 ishtpy.3
 |-  ( ph -> F e. ( J Cn K ) )
3 ishtpy.4
 |-  ( ph -> G e. ( J Cn K ) )
4 ishtpyd.1
 |-  ( ph -> H e. ( ( J tX II ) Cn K ) )
5 ishtpyd.2
 |-  ( ( ph /\ s e. X ) -> ( s H 0 ) = ( F ` s ) )
6 ishtpyd.3
 |-  ( ( ph /\ s e. X ) -> ( s H 1 ) = ( G ` s ) )
7 5 6 jca
 |-  ( ( ph /\ s e. X ) -> ( ( s H 0 ) = ( F ` s ) /\ ( s H 1 ) = ( G ` s ) ) )
8 7 ralrimiva
 |-  ( ph -> A. s e. X ( ( s H 0 ) = ( F ` s ) /\ ( s H 1 ) = ( G ` s ) ) )
9 1 2 3 ishtpy
 |-  ( ph -> ( H e. ( F ( J Htpy K ) G ) <-> ( H e. ( ( J tX II ) Cn K ) /\ A. s e. X ( ( s H 0 ) = ( F ` s ) /\ ( s H 1 ) = ( G ` s ) ) ) ) )
10 4 8 9 mpbir2and
 |-  ( ph -> H e. ( F ( J Htpy K ) G ) )