| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ishtpy.1 |  |-  ( ph -> J e. ( TopOn ` X ) ) | 
						
							| 2 |  | ishtpy.3 |  |-  ( ph -> F e. ( J Cn K ) ) | 
						
							| 3 |  | ishtpy.4 |  |-  ( ph -> G e. ( J Cn K ) ) | 
						
							| 4 |  | ishtpyd.1 |  |-  ( ph -> H e. ( ( J tX II ) Cn K ) ) | 
						
							| 5 |  | ishtpyd.2 |  |-  ( ( ph /\ s e. X ) -> ( s H 0 ) = ( F ` s ) ) | 
						
							| 6 |  | ishtpyd.3 |  |-  ( ( ph /\ s e. X ) -> ( s H 1 ) = ( G ` s ) ) | 
						
							| 7 | 5 6 | jca |  |-  ( ( ph /\ s e. X ) -> ( ( s H 0 ) = ( F ` s ) /\ ( s H 1 ) = ( G ` s ) ) ) | 
						
							| 8 | 7 | ralrimiva |  |-  ( ph -> A. s e. X ( ( s H 0 ) = ( F ` s ) /\ ( s H 1 ) = ( G ` s ) ) ) | 
						
							| 9 | 1 2 3 | ishtpy |  |-  ( ph -> ( H e. ( F ( J Htpy K ) G ) <-> ( H e. ( ( J tX II ) Cn K ) /\ A. s e. X ( ( s H 0 ) = ( F ` s ) /\ ( s H 1 ) = ( G ` s ) ) ) ) ) | 
						
							| 10 | 4 8 9 | mpbir2and |  |-  ( ph -> H e. ( F ( J Htpy K ) G ) ) |