Step |
Hyp |
Ref |
Expression |
1 |
|
ishtpy.1 |
|- ( ph -> J e. ( TopOn ` X ) ) |
2 |
|
ishtpy.3 |
|- ( ph -> F e. ( J Cn K ) ) |
3 |
|
ishtpy.4 |
|- ( ph -> G e. ( J Cn K ) ) |
4 |
|
df-htpy |
|- Htpy = ( j e. Top , k e. Top |-> ( f e. ( j Cn k ) , g e. ( j Cn k ) |-> { h e. ( ( j tX II ) Cn k ) | A. s e. U. j ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) } ) ) |
5 |
4
|
a1i |
|- ( ph -> Htpy = ( j e. Top , k e. Top |-> ( f e. ( j Cn k ) , g e. ( j Cn k ) |-> { h e. ( ( j tX II ) Cn k ) | A. s e. U. j ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) } ) ) ) |
6 |
|
simprl |
|- ( ( ph /\ ( j = J /\ k = K ) ) -> j = J ) |
7 |
|
simprr |
|- ( ( ph /\ ( j = J /\ k = K ) ) -> k = K ) |
8 |
6 7
|
oveq12d |
|- ( ( ph /\ ( j = J /\ k = K ) ) -> ( j Cn k ) = ( J Cn K ) ) |
9 |
6
|
oveq1d |
|- ( ( ph /\ ( j = J /\ k = K ) ) -> ( j tX II ) = ( J tX II ) ) |
10 |
9 7
|
oveq12d |
|- ( ( ph /\ ( j = J /\ k = K ) ) -> ( ( j tX II ) Cn k ) = ( ( J tX II ) Cn K ) ) |
11 |
6
|
unieqd |
|- ( ( ph /\ ( j = J /\ k = K ) ) -> U. j = U. J ) |
12 |
|
toponuni |
|- ( J e. ( TopOn ` X ) -> X = U. J ) |
13 |
1 12
|
syl |
|- ( ph -> X = U. J ) |
14 |
13
|
adantr |
|- ( ( ph /\ ( j = J /\ k = K ) ) -> X = U. J ) |
15 |
11 14
|
eqtr4d |
|- ( ( ph /\ ( j = J /\ k = K ) ) -> U. j = X ) |
16 |
15
|
raleqdv |
|- ( ( ph /\ ( j = J /\ k = K ) ) -> ( A. s e. U. j ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) <-> A. s e. X ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) ) ) |
17 |
10 16
|
rabeqbidv |
|- ( ( ph /\ ( j = J /\ k = K ) ) -> { h e. ( ( j tX II ) Cn k ) | A. s e. U. j ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) } = { h e. ( ( J tX II ) Cn K ) | A. s e. X ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) } ) |
18 |
8 8 17
|
mpoeq123dv |
|- ( ( ph /\ ( j = J /\ k = K ) ) -> ( f e. ( j Cn k ) , g e. ( j Cn k ) |-> { h e. ( ( j tX II ) Cn k ) | A. s e. U. j ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) } ) = ( f e. ( J Cn K ) , g e. ( J Cn K ) |-> { h e. ( ( J tX II ) Cn K ) | A. s e. X ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) } ) ) |
19 |
|
topontop |
|- ( J e. ( TopOn ` X ) -> J e. Top ) |
20 |
1 19
|
syl |
|- ( ph -> J e. Top ) |
21 |
|
cntop2 |
|- ( F e. ( J Cn K ) -> K e. Top ) |
22 |
2 21
|
syl |
|- ( ph -> K e. Top ) |
23 |
|
ovex |
|- ( ( J tX II ) Cn K ) e. _V |
24 |
|
ssrab2 |
|- { h e. ( ( J tX II ) Cn K ) | A. s e. X ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) } C_ ( ( J tX II ) Cn K ) |
25 |
23 24
|
elpwi2 |
|- { h e. ( ( J tX II ) Cn K ) | A. s e. X ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) } e. ~P ( ( J tX II ) Cn K ) |
26 |
25
|
rgen2w |
|- A. f e. ( J Cn K ) A. g e. ( J Cn K ) { h e. ( ( J tX II ) Cn K ) | A. s e. X ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) } e. ~P ( ( J tX II ) Cn K ) |
27 |
|
eqid |
|- ( f e. ( J Cn K ) , g e. ( J Cn K ) |-> { h e. ( ( J tX II ) Cn K ) | A. s e. X ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) } ) = ( f e. ( J Cn K ) , g e. ( J Cn K ) |-> { h e. ( ( J tX II ) Cn K ) | A. s e. X ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) } ) |
28 |
27
|
fmpo |
|- ( A. f e. ( J Cn K ) A. g e. ( J Cn K ) { h e. ( ( J tX II ) Cn K ) | A. s e. X ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) } e. ~P ( ( J tX II ) Cn K ) <-> ( f e. ( J Cn K ) , g e. ( J Cn K ) |-> { h e. ( ( J tX II ) Cn K ) | A. s e. X ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) } ) : ( ( J Cn K ) X. ( J Cn K ) ) --> ~P ( ( J tX II ) Cn K ) ) |
29 |
26 28
|
mpbi |
|- ( f e. ( J Cn K ) , g e. ( J Cn K ) |-> { h e. ( ( J tX II ) Cn K ) | A. s e. X ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) } ) : ( ( J Cn K ) X. ( J Cn K ) ) --> ~P ( ( J tX II ) Cn K ) |
30 |
|
ovex |
|- ( J Cn K ) e. _V |
31 |
30 30
|
xpex |
|- ( ( J Cn K ) X. ( J Cn K ) ) e. _V |
32 |
23
|
pwex |
|- ~P ( ( J tX II ) Cn K ) e. _V |
33 |
|
fex2 |
|- ( ( ( f e. ( J Cn K ) , g e. ( J Cn K ) |-> { h e. ( ( J tX II ) Cn K ) | A. s e. X ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) } ) : ( ( J Cn K ) X. ( J Cn K ) ) --> ~P ( ( J tX II ) Cn K ) /\ ( ( J Cn K ) X. ( J Cn K ) ) e. _V /\ ~P ( ( J tX II ) Cn K ) e. _V ) -> ( f e. ( J Cn K ) , g e. ( J Cn K ) |-> { h e. ( ( J tX II ) Cn K ) | A. s e. X ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) } ) e. _V ) |
34 |
29 31 32 33
|
mp3an |
|- ( f e. ( J Cn K ) , g e. ( J Cn K ) |-> { h e. ( ( J tX II ) Cn K ) | A. s e. X ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) } ) e. _V |
35 |
34
|
a1i |
|- ( ph -> ( f e. ( J Cn K ) , g e. ( J Cn K ) |-> { h e. ( ( J tX II ) Cn K ) | A. s e. X ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) } ) e. _V ) |
36 |
5 18 20 22 35
|
ovmpod |
|- ( ph -> ( J Htpy K ) = ( f e. ( J Cn K ) , g e. ( J Cn K ) |-> { h e. ( ( J tX II ) Cn K ) | A. s e. X ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) } ) ) |
37 |
|
fveq1 |
|- ( f = F -> ( f ` s ) = ( F ` s ) ) |
38 |
37
|
eqeq2d |
|- ( f = F -> ( ( s h 0 ) = ( f ` s ) <-> ( s h 0 ) = ( F ` s ) ) ) |
39 |
|
fveq1 |
|- ( g = G -> ( g ` s ) = ( G ` s ) ) |
40 |
39
|
eqeq2d |
|- ( g = G -> ( ( s h 1 ) = ( g ` s ) <-> ( s h 1 ) = ( G ` s ) ) ) |
41 |
38 40
|
bi2anan9 |
|- ( ( f = F /\ g = G ) -> ( ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) <-> ( ( s h 0 ) = ( F ` s ) /\ ( s h 1 ) = ( G ` s ) ) ) ) |
42 |
41
|
adantl |
|- ( ( ph /\ ( f = F /\ g = G ) ) -> ( ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) <-> ( ( s h 0 ) = ( F ` s ) /\ ( s h 1 ) = ( G ` s ) ) ) ) |
43 |
42
|
ralbidv |
|- ( ( ph /\ ( f = F /\ g = G ) ) -> ( A. s e. X ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) <-> A. s e. X ( ( s h 0 ) = ( F ` s ) /\ ( s h 1 ) = ( G ` s ) ) ) ) |
44 |
43
|
rabbidv |
|- ( ( ph /\ ( f = F /\ g = G ) ) -> { h e. ( ( J tX II ) Cn K ) | A. s e. X ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) } = { h e. ( ( J tX II ) Cn K ) | A. s e. X ( ( s h 0 ) = ( F ` s ) /\ ( s h 1 ) = ( G ` s ) ) } ) |
45 |
23
|
rabex |
|- { h e. ( ( J tX II ) Cn K ) | A. s e. X ( ( s h 0 ) = ( F ` s ) /\ ( s h 1 ) = ( G ` s ) ) } e. _V |
46 |
45
|
a1i |
|- ( ph -> { h e. ( ( J tX II ) Cn K ) | A. s e. X ( ( s h 0 ) = ( F ` s ) /\ ( s h 1 ) = ( G ` s ) ) } e. _V ) |
47 |
36 44 2 3 46
|
ovmpod |
|- ( ph -> ( F ( J Htpy K ) G ) = { h e. ( ( J tX II ) Cn K ) | A. s e. X ( ( s h 0 ) = ( F ` s ) /\ ( s h 1 ) = ( G ` s ) ) } ) |
48 |
47
|
eleq2d |
|- ( ph -> ( H e. ( F ( J Htpy K ) G ) <-> H e. { h e. ( ( J tX II ) Cn K ) | A. s e. X ( ( s h 0 ) = ( F ` s ) /\ ( s h 1 ) = ( G ` s ) ) } ) ) |
49 |
|
oveq |
|- ( h = H -> ( s h 0 ) = ( s H 0 ) ) |
50 |
49
|
eqeq1d |
|- ( h = H -> ( ( s h 0 ) = ( F ` s ) <-> ( s H 0 ) = ( F ` s ) ) ) |
51 |
|
oveq |
|- ( h = H -> ( s h 1 ) = ( s H 1 ) ) |
52 |
51
|
eqeq1d |
|- ( h = H -> ( ( s h 1 ) = ( G ` s ) <-> ( s H 1 ) = ( G ` s ) ) ) |
53 |
50 52
|
anbi12d |
|- ( h = H -> ( ( ( s h 0 ) = ( F ` s ) /\ ( s h 1 ) = ( G ` s ) ) <-> ( ( s H 0 ) = ( F ` s ) /\ ( s H 1 ) = ( G ` s ) ) ) ) |
54 |
53
|
ralbidv |
|- ( h = H -> ( A. s e. X ( ( s h 0 ) = ( F ` s ) /\ ( s h 1 ) = ( G ` s ) ) <-> A. s e. X ( ( s H 0 ) = ( F ` s ) /\ ( s H 1 ) = ( G ` s ) ) ) ) |
55 |
54
|
elrab |
|- ( H e. { h e. ( ( J tX II ) Cn K ) | A. s e. X ( ( s h 0 ) = ( F ` s ) /\ ( s h 1 ) = ( G ` s ) ) } <-> ( H e. ( ( J tX II ) Cn K ) /\ A. s e. X ( ( s H 0 ) = ( F ` s ) /\ ( s H 1 ) = ( G ` s ) ) ) ) |
56 |
48 55
|
bitrdi |
|- ( ph -> ( H e. ( F ( J Htpy K ) G ) <-> ( H e. ( ( J tX II ) Cn K ) /\ A. s e. X ( ( s H 0 ) = ( F ` s ) /\ ( s H 1 ) = ( G ` s ) ) ) ) ) |