| Step |
Hyp |
Ref |
Expression |
| 0 |
|
chtpy |
|- Htpy |
| 1 |
|
vx |
|- x |
| 2 |
|
ctop |
|- Top |
| 3 |
|
vy |
|- y |
| 4 |
|
vf |
|- f |
| 5 |
1
|
cv |
|- x |
| 6 |
|
ccn |
|- Cn |
| 7 |
3
|
cv |
|- y |
| 8 |
5 7 6
|
co |
|- ( x Cn y ) |
| 9 |
|
vg |
|- g |
| 10 |
|
vh |
|- h |
| 11 |
|
ctx |
|- tX |
| 12 |
|
cii |
|- II |
| 13 |
5 12 11
|
co |
|- ( x tX II ) |
| 14 |
13 7 6
|
co |
|- ( ( x tX II ) Cn y ) |
| 15 |
|
vs |
|- s |
| 16 |
5
|
cuni |
|- U. x |
| 17 |
15
|
cv |
|- s |
| 18 |
10
|
cv |
|- h |
| 19 |
|
cc0 |
|- 0 |
| 20 |
17 19 18
|
co |
|- ( s h 0 ) |
| 21 |
4
|
cv |
|- f |
| 22 |
17 21
|
cfv |
|- ( f ` s ) |
| 23 |
20 22
|
wceq |
|- ( s h 0 ) = ( f ` s ) |
| 24 |
|
c1 |
|- 1 |
| 25 |
17 24 18
|
co |
|- ( s h 1 ) |
| 26 |
9
|
cv |
|- g |
| 27 |
17 26
|
cfv |
|- ( g ` s ) |
| 28 |
25 27
|
wceq |
|- ( s h 1 ) = ( g ` s ) |
| 29 |
23 28
|
wa |
|- ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) |
| 30 |
29 15 16
|
wral |
|- A. s e. U. x ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) |
| 31 |
30 10 14
|
crab |
|- { h e. ( ( x tX II ) Cn y ) | A. s e. U. x ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) } |
| 32 |
4 9 8 8 31
|
cmpo |
|- ( f e. ( x Cn y ) , g e. ( x Cn y ) |-> { h e. ( ( x tX II ) Cn y ) | A. s e. U. x ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) } ) |
| 33 |
1 3 2 2 32
|
cmpo |
|- ( x e. Top , y e. Top |-> ( f e. ( x Cn y ) , g e. ( x Cn y ) |-> { h e. ( ( x tX II ) Cn y ) | A. s e. U. x ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) } ) ) |
| 34 |
0 33
|
wceq |
|- Htpy = ( x e. Top , y e. Top |-> ( f e. ( x Cn y ) , g e. ( x Cn y ) |-> { h e. ( ( x tX II ) Cn y ) | A. s e. U. x ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) } ) ) |