Step |
Hyp |
Ref |
Expression |
0 |
|
chtpy |
|- Htpy |
1 |
|
vx |
|- x |
2 |
|
ctop |
|- Top |
3 |
|
vy |
|- y |
4 |
|
vf |
|- f |
5 |
1
|
cv |
|- x |
6 |
|
ccn |
|- Cn |
7 |
3
|
cv |
|- y |
8 |
5 7 6
|
co |
|- ( x Cn y ) |
9 |
|
vg |
|- g |
10 |
|
vh |
|- h |
11 |
|
ctx |
|- tX |
12 |
|
cii |
|- II |
13 |
5 12 11
|
co |
|- ( x tX II ) |
14 |
13 7 6
|
co |
|- ( ( x tX II ) Cn y ) |
15 |
|
vs |
|- s |
16 |
5
|
cuni |
|- U. x |
17 |
15
|
cv |
|- s |
18 |
10
|
cv |
|- h |
19 |
|
cc0 |
|- 0 |
20 |
17 19 18
|
co |
|- ( s h 0 ) |
21 |
4
|
cv |
|- f |
22 |
17 21
|
cfv |
|- ( f ` s ) |
23 |
20 22
|
wceq |
|- ( s h 0 ) = ( f ` s ) |
24 |
|
c1 |
|- 1 |
25 |
17 24 18
|
co |
|- ( s h 1 ) |
26 |
9
|
cv |
|- g |
27 |
17 26
|
cfv |
|- ( g ` s ) |
28 |
25 27
|
wceq |
|- ( s h 1 ) = ( g ` s ) |
29 |
23 28
|
wa |
|- ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) |
30 |
29 15 16
|
wral |
|- A. s e. U. x ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) |
31 |
30 10 14
|
crab |
|- { h e. ( ( x tX II ) Cn y ) | A. s e. U. x ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) } |
32 |
4 9 8 8 31
|
cmpo |
|- ( f e. ( x Cn y ) , g e. ( x Cn y ) |-> { h e. ( ( x tX II ) Cn y ) | A. s e. U. x ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) } ) |
33 |
1 3 2 2 32
|
cmpo |
|- ( x e. Top , y e. Top |-> ( f e. ( x Cn y ) , g e. ( x Cn y ) |-> { h e. ( ( x tX II ) Cn y ) | A. s e. U. x ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) } ) ) |
34 |
0 33
|
wceq |
|- Htpy = ( x e. Top , y e. Top |-> ( f e. ( x Cn y ) , g e. ( x Cn y ) |-> { h e. ( ( x tX II ) Cn y ) | A. s e. U. x ( ( s h 0 ) = ( f ` s ) /\ ( s h 1 ) = ( g ` s ) ) } ) ) |