Step |
Hyp |
Ref |
Expression |
0 |
|
chtpy |
⊢ Htpy |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
ctop |
⊢ Top |
3 |
|
vy |
⊢ 𝑦 |
4 |
|
vf |
⊢ 𝑓 |
5 |
1
|
cv |
⊢ 𝑥 |
6 |
|
ccn |
⊢ Cn |
7 |
3
|
cv |
⊢ 𝑦 |
8 |
5 7 6
|
co |
⊢ ( 𝑥 Cn 𝑦 ) |
9 |
|
vg |
⊢ 𝑔 |
10 |
|
vh |
⊢ ℎ |
11 |
|
ctx |
⊢ ×t |
12 |
|
cii |
⊢ II |
13 |
5 12 11
|
co |
⊢ ( 𝑥 ×t II ) |
14 |
13 7 6
|
co |
⊢ ( ( 𝑥 ×t II ) Cn 𝑦 ) |
15 |
|
vs |
⊢ 𝑠 |
16 |
5
|
cuni |
⊢ ∪ 𝑥 |
17 |
15
|
cv |
⊢ 𝑠 |
18 |
10
|
cv |
⊢ ℎ |
19 |
|
cc0 |
⊢ 0 |
20 |
17 19 18
|
co |
⊢ ( 𝑠 ℎ 0 ) |
21 |
4
|
cv |
⊢ 𝑓 |
22 |
17 21
|
cfv |
⊢ ( 𝑓 ‘ 𝑠 ) |
23 |
20 22
|
wceq |
⊢ ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) |
24 |
|
c1 |
⊢ 1 |
25 |
17 24 18
|
co |
⊢ ( 𝑠 ℎ 1 ) |
26 |
9
|
cv |
⊢ 𝑔 |
27 |
17 26
|
cfv |
⊢ ( 𝑔 ‘ 𝑠 ) |
28 |
25 27
|
wceq |
⊢ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) |
29 |
23 28
|
wa |
⊢ ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) |
30 |
29 15 16
|
wral |
⊢ ∀ 𝑠 ∈ ∪ 𝑥 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) |
31 |
30 10 14
|
crab |
⊢ { ℎ ∈ ( ( 𝑥 ×t II ) Cn 𝑦 ) ∣ ∀ 𝑠 ∈ ∪ 𝑥 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) } |
32 |
4 9 8 8 31
|
cmpo |
⊢ ( 𝑓 ∈ ( 𝑥 Cn 𝑦 ) , 𝑔 ∈ ( 𝑥 Cn 𝑦 ) ↦ { ℎ ∈ ( ( 𝑥 ×t II ) Cn 𝑦 ) ∣ ∀ 𝑠 ∈ ∪ 𝑥 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) } ) |
33 |
1 3 2 2 32
|
cmpo |
⊢ ( 𝑥 ∈ Top , 𝑦 ∈ Top ↦ ( 𝑓 ∈ ( 𝑥 Cn 𝑦 ) , 𝑔 ∈ ( 𝑥 Cn 𝑦 ) ↦ { ℎ ∈ ( ( 𝑥 ×t II ) Cn 𝑦 ) ∣ ∀ 𝑠 ∈ ∪ 𝑥 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) } ) ) |
34 |
0 33
|
wceq |
⊢ Htpy = ( 𝑥 ∈ Top , 𝑦 ∈ Top ↦ ( 𝑓 ∈ ( 𝑥 Cn 𝑦 ) , 𝑔 ∈ ( 𝑥 Cn 𝑦 ) ↦ { ℎ ∈ ( ( 𝑥 ×t II ) Cn 𝑦 ) ∣ ∀ 𝑠 ∈ ∪ 𝑥 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) } ) ) |