| Step |
Hyp |
Ref |
Expression |
| 0 |
|
chtpy |
⊢ Htpy |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
ctop |
⊢ Top |
| 3 |
|
vy |
⊢ 𝑦 |
| 4 |
|
vf |
⊢ 𝑓 |
| 5 |
1
|
cv |
⊢ 𝑥 |
| 6 |
|
ccn |
⊢ Cn |
| 7 |
3
|
cv |
⊢ 𝑦 |
| 8 |
5 7 6
|
co |
⊢ ( 𝑥 Cn 𝑦 ) |
| 9 |
|
vg |
⊢ 𝑔 |
| 10 |
|
vh |
⊢ ℎ |
| 11 |
|
ctx |
⊢ ×t |
| 12 |
|
cii |
⊢ II |
| 13 |
5 12 11
|
co |
⊢ ( 𝑥 ×t II ) |
| 14 |
13 7 6
|
co |
⊢ ( ( 𝑥 ×t II ) Cn 𝑦 ) |
| 15 |
|
vs |
⊢ 𝑠 |
| 16 |
5
|
cuni |
⊢ ∪ 𝑥 |
| 17 |
15
|
cv |
⊢ 𝑠 |
| 18 |
10
|
cv |
⊢ ℎ |
| 19 |
|
cc0 |
⊢ 0 |
| 20 |
17 19 18
|
co |
⊢ ( 𝑠 ℎ 0 ) |
| 21 |
4
|
cv |
⊢ 𝑓 |
| 22 |
17 21
|
cfv |
⊢ ( 𝑓 ‘ 𝑠 ) |
| 23 |
20 22
|
wceq |
⊢ ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) |
| 24 |
|
c1 |
⊢ 1 |
| 25 |
17 24 18
|
co |
⊢ ( 𝑠 ℎ 1 ) |
| 26 |
9
|
cv |
⊢ 𝑔 |
| 27 |
17 26
|
cfv |
⊢ ( 𝑔 ‘ 𝑠 ) |
| 28 |
25 27
|
wceq |
⊢ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) |
| 29 |
23 28
|
wa |
⊢ ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) |
| 30 |
29 15 16
|
wral |
⊢ ∀ 𝑠 ∈ ∪ 𝑥 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) |
| 31 |
30 10 14
|
crab |
⊢ { ℎ ∈ ( ( 𝑥 ×t II ) Cn 𝑦 ) ∣ ∀ 𝑠 ∈ ∪ 𝑥 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) } |
| 32 |
4 9 8 8 31
|
cmpo |
⊢ ( 𝑓 ∈ ( 𝑥 Cn 𝑦 ) , 𝑔 ∈ ( 𝑥 Cn 𝑦 ) ↦ { ℎ ∈ ( ( 𝑥 ×t II ) Cn 𝑦 ) ∣ ∀ 𝑠 ∈ ∪ 𝑥 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) } ) |
| 33 |
1 3 2 2 32
|
cmpo |
⊢ ( 𝑥 ∈ Top , 𝑦 ∈ Top ↦ ( 𝑓 ∈ ( 𝑥 Cn 𝑦 ) , 𝑔 ∈ ( 𝑥 Cn 𝑦 ) ↦ { ℎ ∈ ( ( 𝑥 ×t II ) Cn 𝑦 ) ∣ ∀ 𝑠 ∈ ∪ 𝑥 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) } ) ) |
| 34 |
0 33
|
wceq |
⊢ Htpy = ( 𝑥 ∈ Top , 𝑦 ∈ Top ↦ ( 𝑓 ∈ ( 𝑥 Cn 𝑦 ) , 𝑔 ∈ ( 𝑥 Cn 𝑦 ) ↦ { ℎ ∈ ( ( 𝑥 ×t II ) Cn 𝑦 ) ∣ ∀ 𝑠 ∈ ∪ 𝑥 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) } ) ) |