Metamath Proof Explorer


Definition df-htpy

Description: Define the function which takes topological spaces X , Y and two continuous functions F , G : X --> Y and returns the class of homotopies from F to G . (Contributed by Mario Carneiro, 22-Feb-2015)

Ref Expression
Assertion df-htpy Htpy = ( 𝑥 ∈ Top , 𝑦 ∈ Top ↦ ( 𝑓 ∈ ( 𝑥 Cn 𝑦 ) , 𝑔 ∈ ( 𝑥 Cn 𝑦 ) ↦ { ∈ ( ( 𝑥 ×t II ) Cn 𝑦 ) ∣ ∀ 𝑠 𝑥 ( ( 𝑠 0 ) = ( 𝑓𝑠 ) ∧ ( 𝑠 1 ) = ( 𝑔𝑠 ) ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 chtpy Htpy
1 vx 𝑥
2 ctop Top
3 vy 𝑦
4 vf 𝑓
5 1 cv 𝑥
6 ccn Cn
7 3 cv 𝑦
8 5 7 6 co ( 𝑥 Cn 𝑦 )
9 vg 𝑔
10 vh
11 ctx ×t
12 cii II
13 5 12 11 co ( 𝑥 ×t II )
14 13 7 6 co ( ( 𝑥 ×t II ) Cn 𝑦 )
15 vs 𝑠
16 5 cuni 𝑥
17 15 cv 𝑠
18 10 cv
19 cc0 0
20 17 19 18 co ( 𝑠 0 )
21 4 cv 𝑓
22 17 21 cfv ( 𝑓𝑠 )
23 20 22 wceq ( 𝑠 0 ) = ( 𝑓𝑠 )
24 c1 1
25 17 24 18 co ( 𝑠 1 )
26 9 cv 𝑔
27 17 26 cfv ( 𝑔𝑠 )
28 25 27 wceq ( 𝑠 1 ) = ( 𝑔𝑠 )
29 23 28 wa ( ( 𝑠 0 ) = ( 𝑓𝑠 ) ∧ ( 𝑠 1 ) = ( 𝑔𝑠 ) )
30 29 15 16 wral 𝑠 𝑥 ( ( 𝑠 0 ) = ( 𝑓𝑠 ) ∧ ( 𝑠 1 ) = ( 𝑔𝑠 ) )
31 30 10 14 crab { ∈ ( ( 𝑥 ×t II ) Cn 𝑦 ) ∣ ∀ 𝑠 𝑥 ( ( 𝑠 0 ) = ( 𝑓𝑠 ) ∧ ( 𝑠 1 ) = ( 𝑔𝑠 ) ) }
32 4 9 8 8 31 cmpo ( 𝑓 ∈ ( 𝑥 Cn 𝑦 ) , 𝑔 ∈ ( 𝑥 Cn 𝑦 ) ↦ { ∈ ( ( 𝑥 ×t II ) Cn 𝑦 ) ∣ ∀ 𝑠 𝑥 ( ( 𝑠 0 ) = ( 𝑓𝑠 ) ∧ ( 𝑠 1 ) = ( 𝑔𝑠 ) ) } )
33 1 3 2 2 32 cmpo ( 𝑥 ∈ Top , 𝑦 ∈ Top ↦ ( 𝑓 ∈ ( 𝑥 Cn 𝑦 ) , 𝑔 ∈ ( 𝑥 Cn 𝑦 ) ↦ { ∈ ( ( 𝑥 ×t II ) Cn 𝑦 ) ∣ ∀ 𝑠 𝑥 ( ( 𝑠 0 ) = ( 𝑓𝑠 ) ∧ ( 𝑠 1 ) = ( 𝑔𝑠 ) ) } ) )
34 0 33 wceq Htpy = ( 𝑥 ∈ Top , 𝑦 ∈ Top ↦ ( 𝑓 ∈ ( 𝑥 Cn 𝑦 ) , 𝑔 ∈ ( 𝑥 Cn 𝑦 ) ↦ { ∈ ( ( 𝑥 ×t II ) Cn 𝑦 ) ∣ ∀ 𝑠 𝑥 ( ( 𝑠 0 ) = ( 𝑓𝑠 ) ∧ ( 𝑠 1 ) = ( 𝑔𝑠 ) ) } ) )