Metamath Proof Explorer


Definition df-htpy

Description: Define the function which takes topological spaces X , Y and two continuous functions F , G : X --> Y and returns the class of homotopies from F to G . (Contributed by Mario Carneiro, 22-Feb-2015)

Ref Expression
Assertion df-htpy Htpy=xTop,yTopfxCny,gxCnyhx×tIICny|sxsh0=fssh1=gs

Detailed syntax breakdown

Step Hyp Ref Expression
0 chtpy classHtpy
1 vx setvarx
2 ctop classTop
3 vy setvary
4 vf setvarf
5 1 cv setvarx
6 ccn classCn
7 3 cv setvary
8 5 7 6 co classxCny
9 vg setvarg
10 vh setvarh
11 ctx class×t
12 cii classII
13 5 12 11 co classx×tII
14 13 7 6 co classx×tIICny
15 vs setvars
16 5 cuni classx
17 15 cv setvars
18 10 cv setvarh
19 cc0 class0
20 17 19 18 co classsh0
21 4 cv setvarf
22 17 21 cfv classfs
23 20 22 wceq wffsh0=fs
24 c1 class1
25 17 24 18 co classsh1
26 9 cv setvarg
27 17 26 cfv classgs
28 25 27 wceq wffsh1=gs
29 23 28 wa wffsh0=fssh1=gs
30 29 15 16 wral wffsxsh0=fssh1=gs
31 30 10 14 crab classhx×tIICny|sxsh0=fssh1=gs
32 4 9 8 8 31 cmpo classfxCny,gxCnyhx×tIICny|sxsh0=fssh1=gs
33 1 3 2 2 32 cmpo classxTop,yTopfxCny,gxCnyhx×tIICny|sxsh0=fssh1=gs
34 0 33 wceq wffHtpy=xTop,yTopfxCny,gxCnyhx×tIICny|sxsh0=fssh1=gs