Metamath Proof Explorer


Definition df-phtpy

Description: Define the class of path homotopies between two paths F , G : II --> X ; these are homotopies (in the sense of df-htpy ) which also preserve both endpoints of the paths throughout the homotopy. Definition of Hatcher p. 25. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion df-phtpy PHtpy=xTopfIICnx,gIICnxhfIIHtpyxg|s010hs=f01hs=f1

Detailed syntax breakdown

Step Hyp Ref Expression
0 cphtpy classPHtpy
1 vx setvarx
2 ctop classTop
3 vf setvarf
4 cii classII
5 ccn classCn
6 1 cv setvarx
7 4 6 5 co classIICnx
8 vg setvarg
9 vh setvarh
10 3 cv setvarf
11 chtpy classHtpy
12 4 6 11 co classIIHtpyx
13 8 cv setvarg
14 10 13 12 co classfIIHtpyxg
15 vs setvars
16 cc0 class0
17 cicc class.
18 c1 class1
19 16 18 17 co class01
20 9 cv setvarh
21 15 cv setvars
22 16 21 20 co class0hs
23 16 10 cfv classf0
24 22 23 wceq wff0hs=f0
25 18 21 20 co class1hs
26 18 10 cfv classf1
27 25 26 wceq wff1hs=f1
28 24 27 wa wff0hs=f01hs=f1
29 28 15 19 wral wffs010hs=f01hs=f1
30 29 9 14 crab classhfIIHtpyxg|s010hs=f01hs=f1
31 3 8 7 7 30 cmpo classfIICnx,gIICnxhfIIHtpyxg|s010hs=f01hs=f1
32 1 2 31 cmpt classxTopfIICnx,gIICnxhfIIHtpyxg|s010hs=f01hs=f1
33 0 32 wceq wffPHtpy=xTopfIICnx,gIICnxhfIIHtpyxg|s010hs=f01hs=f1