Description: Define the class of path homotopies between two paths F , G : II --> X ; these are homotopies (in the sense of df-htpy ) which also preserve both endpoints of the paths throughout the homotopy. Definition of Hatcher p. 25. (Contributed by Jeff Madsen, 2-Sep-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | df-phtpy | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cphtpy | |
|
1 | vx | |
|
2 | ctop | |
|
3 | vf | |
|
4 | cii | |
|
5 | ccn | |
|
6 | 1 | cv | |
7 | 4 6 5 | co | |
8 | vg | |
|
9 | vh | |
|
10 | 3 | cv | |
11 | chtpy | |
|
12 | 4 6 11 | co | |
13 | 8 | cv | |
14 | 10 13 12 | co | |
15 | vs | |
|
16 | cc0 | |
|
17 | cicc | |
|
18 | c1 | |
|
19 | 16 18 17 | co | |
20 | 9 | cv | |
21 | 15 | cv | |
22 | 16 21 20 | co | |
23 | 16 10 | cfv | |
24 | 22 23 | wceq | |
25 | 18 21 20 | co | |
26 | 18 10 | cfv | |
27 | 25 26 | wceq | |
28 | 24 27 | wa | |
29 | 28 15 19 | wral | |
30 | 29 9 14 | crab | |
31 | 3 8 7 7 30 | cmpo | |
32 | 1 2 31 | cmpt | |
33 | 0 32 | wceq | |