Step |
Hyp |
Ref |
Expression |
0 |
|
cphtpy |
|- PHtpy |
1 |
|
vx |
|- x |
2 |
|
ctop |
|- Top |
3 |
|
vf |
|- f |
4 |
|
cii |
|- II |
5 |
|
ccn |
|- Cn |
6 |
1
|
cv |
|- x |
7 |
4 6 5
|
co |
|- ( II Cn x ) |
8 |
|
vg |
|- g |
9 |
|
vh |
|- h |
10 |
3
|
cv |
|- f |
11 |
|
chtpy |
|- Htpy |
12 |
4 6 11
|
co |
|- ( II Htpy x ) |
13 |
8
|
cv |
|- g |
14 |
10 13 12
|
co |
|- ( f ( II Htpy x ) g ) |
15 |
|
vs |
|- s |
16 |
|
cc0 |
|- 0 |
17 |
|
cicc |
|- [,] |
18 |
|
c1 |
|- 1 |
19 |
16 18 17
|
co |
|- ( 0 [,] 1 ) |
20 |
9
|
cv |
|- h |
21 |
15
|
cv |
|- s |
22 |
16 21 20
|
co |
|- ( 0 h s ) |
23 |
16 10
|
cfv |
|- ( f ` 0 ) |
24 |
22 23
|
wceq |
|- ( 0 h s ) = ( f ` 0 ) |
25 |
18 21 20
|
co |
|- ( 1 h s ) |
26 |
18 10
|
cfv |
|- ( f ` 1 ) |
27 |
25 26
|
wceq |
|- ( 1 h s ) = ( f ` 1 ) |
28 |
24 27
|
wa |
|- ( ( 0 h s ) = ( f ` 0 ) /\ ( 1 h s ) = ( f ` 1 ) ) |
29 |
28 15 19
|
wral |
|- A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( f ` 0 ) /\ ( 1 h s ) = ( f ` 1 ) ) |
30 |
29 9 14
|
crab |
|- { h e. ( f ( II Htpy x ) g ) | A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( f ` 0 ) /\ ( 1 h s ) = ( f ` 1 ) ) } |
31 |
3 8 7 7 30
|
cmpo |
|- ( f e. ( II Cn x ) , g e. ( II Cn x ) |-> { h e. ( f ( II Htpy x ) g ) | A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( f ` 0 ) /\ ( 1 h s ) = ( f ` 1 ) ) } ) |
32 |
1 2 31
|
cmpt |
|- ( x e. Top |-> ( f e. ( II Cn x ) , g e. ( II Cn x ) |-> { h e. ( f ( II Htpy x ) g ) | A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( f ` 0 ) /\ ( 1 h s ) = ( f ` 1 ) ) } ) ) |
33 |
0 32
|
wceq |
|- PHtpy = ( x e. Top |-> ( f e. ( II Cn x ) , g e. ( II Cn x ) |-> { h e. ( f ( II Htpy x ) g ) | A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( f ` 0 ) /\ ( 1 h s ) = ( f ` 1 ) ) } ) ) |