Metamath Proof Explorer


Definition df-phtpy

Description: Define the class of path homotopies between two paths F , G : II --> X ; these are homotopies (in the sense of df-htpy ) which also preserve both endpoints of the paths throughout the homotopy. Definition of Hatcher p. 25. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion df-phtpy
|- PHtpy = ( x e. Top |-> ( f e. ( II Cn x ) , g e. ( II Cn x ) |-> { h e. ( f ( II Htpy x ) g ) | A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( f ` 0 ) /\ ( 1 h s ) = ( f ` 1 ) ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cphtpy
 |-  PHtpy
1 vx
 |-  x
2 ctop
 |-  Top
3 vf
 |-  f
4 cii
 |-  II
5 ccn
 |-  Cn
6 1 cv
 |-  x
7 4 6 5 co
 |-  ( II Cn x )
8 vg
 |-  g
9 vh
 |-  h
10 3 cv
 |-  f
11 chtpy
 |-  Htpy
12 4 6 11 co
 |-  ( II Htpy x )
13 8 cv
 |-  g
14 10 13 12 co
 |-  ( f ( II Htpy x ) g )
15 vs
 |-  s
16 cc0
 |-  0
17 cicc
 |-  [,]
18 c1
 |-  1
19 16 18 17 co
 |-  ( 0 [,] 1 )
20 9 cv
 |-  h
21 15 cv
 |-  s
22 16 21 20 co
 |-  ( 0 h s )
23 16 10 cfv
 |-  ( f ` 0 )
24 22 23 wceq
 |-  ( 0 h s ) = ( f ` 0 )
25 18 21 20 co
 |-  ( 1 h s )
26 18 10 cfv
 |-  ( f ` 1 )
27 25 26 wceq
 |-  ( 1 h s ) = ( f ` 1 )
28 24 27 wa
 |-  ( ( 0 h s ) = ( f ` 0 ) /\ ( 1 h s ) = ( f ` 1 ) )
29 28 15 19 wral
 |-  A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( f ` 0 ) /\ ( 1 h s ) = ( f ` 1 ) )
30 29 9 14 crab
 |-  { h e. ( f ( II Htpy x ) g ) | A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( f ` 0 ) /\ ( 1 h s ) = ( f ` 1 ) ) }
31 3 8 7 7 30 cmpo
 |-  ( f e. ( II Cn x ) , g e. ( II Cn x ) |-> { h e. ( f ( II Htpy x ) g ) | A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( f ` 0 ) /\ ( 1 h s ) = ( f ` 1 ) ) } )
32 1 2 31 cmpt
 |-  ( x e. Top |-> ( f e. ( II Cn x ) , g e. ( II Cn x ) |-> { h e. ( f ( II Htpy x ) g ) | A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( f ` 0 ) /\ ( 1 h s ) = ( f ` 1 ) ) } ) )
33 0 32 wceq
 |-  PHtpy = ( x e. Top |-> ( f e. ( II Cn x ) , g e. ( II Cn x ) |-> { h e. ( f ( II Htpy x ) g ) | A. s e. ( 0 [,] 1 ) ( ( 0 h s ) = ( f ` 0 ) /\ ( 1 h s ) = ( f ` 1 ) ) } ) )