Step |
Hyp |
Ref |
Expression |
0 |
|
cphtpy |
⊢ PHtpy |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
ctop |
⊢ Top |
3 |
|
vf |
⊢ 𝑓 |
4 |
|
cii |
⊢ II |
5 |
|
ccn |
⊢ Cn |
6 |
1
|
cv |
⊢ 𝑥 |
7 |
4 6 5
|
co |
⊢ ( II Cn 𝑥 ) |
8 |
|
vg |
⊢ 𝑔 |
9 |
|
vh |
⊢ ℎ |
10 |
3
|
cv |
⊢ 𝑓 |
11 |
|
chtpy |
⊢ Htpy |
12 |
4 6 11
|
co |
⊢ ( II Htpy 𝑥 ) |
13 |
8
|
cv |
⊢ 𝑔 |
14 |
10 13 12
|
co |
⊢ ( 𝑓 ( II Htpy 𝑥 ) 𝑔 ) |
15 |
|
vs |
⊢ 𝑠 |
16 |
|
cc0 |
⊢ 0 |
17 |
|
cicc |
⊢ [,] |
18 |
|
c1 |
⊢ 1 |
19 |
16 18 17
|
co |
⊢ ( 0 [,] 1 ) |
20 |
9
|
cv |
⊢ ℎ |
21 |
15
|
cv |
⊢ 𝑠 |
22 |
16 21 20
|
co |
⊢ ( 0 ℎ 𝑠 ) |
23 |
16 10
|
cfv |
⊢ ( 𝑓 ‘ 0 ) |
24 |
22 23
|
wceq |
⊢ ( 0 ℎ 𝑠 ) = ( 𝑓 ‘ 0 ) |
25 |
18 21 20
|
co |
⊢ ( 1 ℎ 𝑠 ) |
26 |
18 10
|
cfv |
⊢ ( 𝑓 ‘ 1 ) |
27 |
25 26
|
wceq |
⊢ ( 1 ℎ 𝑠 ) = ( 𝑓 ‘ 1 ) |
28 |
24 27
|
wa |
⊢ ( ( 0 ℎ 𝑠 ) = ( 𝑓 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝑓 ‘ 1 ) ) |
29 |
28 15 19
|
wral |
⊢ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 ) = ( 𝑓 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝑓 ‘ 1 ) ) |
30 |
29 9 14
|
crab |
⊢ { ℎ ∈ ( 𝑓 ( II Htpy 𝑥 ) 𝑔 ) ∣ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 ) = ( 𝑓 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝑓 ‘ 1 ) ) } |
31 |
3 8 7 7 30
|
cmpo |
⊢ ( 𝑓 ∈ ( II Cn 𝑥 ) , 𝑔 ∈ ( II Cn 𝑥 ) ↦ { ℎ ∈ ( 𝑓 ( II Htpy 𝑥 ) 𝑔 ) ∣ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 ) = ( 𝑓 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝑓 ‘ 1 ) ) } ) |
32 |
1 2 31
|
cmpt |
⊢ ( 𝑥 ∈ Top ↦ ( 𝑓 ∈ ( II Cn 𝑥 ) , 𝑔 ∈ ( II Cn 𝑥 ) ↦ { ℎ ∈ ( 𝑓 ( II Htpy 𝑥 ) 𝑔 ) ∣ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 ) = ( 𝑓 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝑓 ‘ 1 ) ) } ) ) |
33 |
0 32
|
wceq |
⊢ PHtpy = ( 𝑥 ∈ Top ↦ ( 𝑓 ∈ ( II Cn 𝑥 ) , 𝑔 ∈ ( II Cn 𝑥 ) ↦ { ℎ ∈ ( 𝑓 ( II Htpy 𝑥 ) 𝑔 ) ∣ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 ℎ 𝑠 ) = ( 𝑓 ‘ 0 ) ∧ ( 1 ℎ 𝑠 ) = ( 𝑓 ‘ 1 ) ) } ) ) |