Metamath Proof Explorer


Definition df-phtpy

Description: Define the class of path homotopies between two paths F , G : II --> X ; these are homotopies (in the sense of df-htpy ) which also preserve both endpoints of the paths throughout the homotopy. Definition of Hatcher p. 25. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion df-phtpy PHtpy = ( 𝑥 ∈ Top ↦ ( 𝑓 ∈ ( II Cn 𝑥 ) , 𝑔 ∈ ( II Cn 𝑥 ) ↦ { ∈ ( 𝑓 ( II Htpy 𝑥 ) 𝑔 ) ∣ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 𝑠 ) = ( 𝑓 ‘ 0 ) ∧ ( 1 𝑠 ) = ( 𝑓 ‘ 1 ) ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cphtpy PHtpy
1 vx 𝑥
2 ctop Top
3 vf 𝑓
4 cii II
5 ccn Cn
6 1 cv 𝑥
7 4 6 5 co ( II Cn 𝑥 )
8 vg 𝑔
9 vh
10 3 cv 𝑓
11 chtpy Htpy
12 4 6 11 co ( II Htpy 𝑥 )
13 8 cv 𝑔
14 10 13 12 co ( 𝑓 ( II Htpy 𝑥 ) 𝑔 )
15 vs 𝑠
16 cc0 0
17 cicc [,]
18 c1 1
19 16 18 17 co ( 0 [,] 1 )
20 9 cv
21 15 cv 𝑠
22 16 21 20 co ( 0 𝑠 )
23 16 10 cfv ( 𝑓 ‘ 0 )
24 22 23 wceq ( 0 𝑠 ) = ( 𝑓 ‘ 0 )
25 18 21 20 co ( 1 𝑠 )
26 18 10 cfv ( 𝑓 ‘ 1 )
27 25 26 wceq ( 1 𝑠 ) = ( 𝑓 ‘ 1 )
28 24 27 wa ( ( 0 𝑠 ) = ( 𝑓 ‘ 0 ) ∧ ( 1 𝑠 ) = ( 𝑓 ‘ 1 ) )
29 28 15 19 wral 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 𝑠 ) = ( 𝑓 ‘ 0 ) ∧ ( 1 𝑠 ) = ( 𝑓 ‘ 1 ) )
30 29 9 14 crab { ∈ ( 𝑓 ( II Htpy 𝑥 ) 𝑔 ) ∣ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 𝑠 ) = ( 𝑓 ‘ 0 ) ∧ ( 1 𝑠 ) = ( 𝑓 ‘ 1 ) ) }
31 3 8 7 7 30 cmpo ( 𝑓 ∈ ( II Cn 𝑥 ) , 𝑔 ∈ ( II Cn 𝑥 ) ↦ { ∈ ( 𝑓 ( II Htpy 𝑥 ) 𝑔 ) ∣ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 𝑠 ) = ( 𝑓 ‘ 0 ) ∧ ( 1 𝑠 ) = ( 𝑓 ‘ 1 ) ) } )
32 1 2 31 cmpt ( 𝑥 ∈ Top ↦ ( 𝑓 ∈ ( II Cn 𝑥 ) , 𝑔 ∈ ( II Cn 𝑥 ) ↦ { ∈ ( 𝑓 ( II Htpy 𝑥 ) 𝑔 ) ∣ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 𝑠 ) = ( 𝑓 ‘ 0 ) ∧ ( 1 𝑠 ) = ( 𝑓 ‘ 1 ) ) } ) )
33 0 32 wceq PHtpy = ( 𝑥 ∈ Top ↦ ( 𝑓 ∈ ( II Cn 𝑥 ) , 𝑔 ∈ ( II Cn 𝑥 ) ↦ { ∈ ( 𝑓 ( II Htpy 𝑥 ) 𝑔 ) ∣ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 0 𝑠 ) = ( 𝑓 ‘ 0 ) ∧ ( 1 𝑠 ) = ( 𝑓 ‘ 1 ) ) } ) )