Step |
Hyp |
Ref |
Expression |
1 |
|
ishtpy.1 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
2 |
|
ishtpy.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
3 |
|
ishtpy.4 |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ) |
4 |
|
df-htpy |
⊢ Htpy = ( 𝑗 ∈ Top , 𝑘 ∈ Top ↦ ( 𝑓 ∈ ( 𝑗 Cn 𝑘 ) , 𝑔 ∈ ( 𝑗 Cn 𝑘 ) ↦ { ℎ ∈ ( ( 𝑗 ×t II ) Cn 𝑘 ) ∣ ∀ 𝑠 ∈ ∪ 𝑗 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) } ) ) |
5 |
4
|
a1i |
⊢ ( 𝜑 → Htpy = ( 𝑗 ∈ Top , 𝑘 ∈ Top ↦ ( 𝑓 ∈ ( 𝑗 Cn 𝑘 ) , 𝑔 ∈ ( 𝑗 Cn 𝑘 ) ↦ { ℎ ∈ ( ( 𝑗 ×t II ) Cn 𝑘 ) ∣ ∀ 𝑠 ∈ ∪ 𝑗 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) } ) ) ) |
6 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → 𝑗 = 𝐽 ) |
7 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → 𝑘 = 𝐾 ) |
8 |
6 7
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → ( 𝑗 Cn 𝑘 ) = ( 𝐽 Cn 𝐾 ) ) |
9 |
6
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → ( 𝑗 ×t II ) = ( 𝐽 ×t II ) ) |
10 |
9 7
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → ( ( 𝑗 ×t II ) Cn 𝑘 ) = ( ( 𝐽 ×t II ) Cn 𝐾 ) ) |
11 |
6
|
unieqd |
⊢ ( ( 𝜑 ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → ∪ 𝑗 = ∪ 𝐽 ) |
12 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
13 |
1 12
|
syl |
⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → 𝑋 = ∪ 𝐽 ) |
15 |
11 14
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → ∪ 𝑗 = 𝑋 ) |
16 |
15
|
raleqdv |
⊢ ( ( 𝜑 ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → ( ∀ 𝑠 ∈ ∪ 𝑗 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) ↔ ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) ) ) |
17 |
10 16
|
rabeqbidv |
⊢ ( ( 𝜑 ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → { ℎ ∈ ( ( 𝑗 ×t II ) Cn 𝑘 ) ∣ ∀ 𝑠 ∈ ∪ 𝑗 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) } = { ℎ ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∣ ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) } ) |
18 |
8 8 17
|
mpoeq123dv |
⊢ ( ( 𝜑 ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → ( 𝑓 ∈ ( 𝑗 Cn 𝑘 ) , 𝑔 ∈ ( 𝑗 Cn 𝑘 ) ↦ { ℎ ∈ ( ( 𝑗 ×t II ) Cn 𝑘 ) ∣ ∀ 𝑠 ∈ ∪ 𝑗 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) } ) = ( 𝑓 ∈ ( 𝐽 Cn 𝐾 ) , 𝑔 ∈ ( 𝐽 Cn 𝐾 ) ↦ { ℎ ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∣ ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) } ) ) |
19 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
20 |
1 19
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
21 |
|
cntop2 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) |
22 |
2 21
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
23 |
|
ovex |
⊢ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∈ V |
24 |
|
ssrab2 |
⊢ { ℎ ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∣ ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) } ⊆ ( ( 𝐽 ×t II ) Cn 𝐾 ) |
25 |
23 24
|
elpwi2 |
⊢ { ℎ ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∣ ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) } ∈ 𝒫 ( ( 𝐽 ×t II ) Cn 𝐾 ) |
26 |
25
|
rgen2w |
⊢ ∀ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ∀ 𝑔 ∈ ( 𝐽 Cn 𝐾 ) { ℎ ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∣ ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) } ∈ 𝒫 ( ( 𝐽 ×t II ) Cn 𝐾 ) |
27 |
|
eqid |
⊢ ( 𝑓 ∈ ( 𝐽 Cn 𝐾 ) , 𝑔 ∈ ( 𝐽 Cn 𝐾 ) ↦ { ℎ ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∣ ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) } ) = ( 𝑓 ∈ ( 𝐽 Cn 𝐾 ) , 𝑔 ∈ ( 𝐽 Cn 𝐾 ) ↦ { ℎ ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∣ ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) } ) |
28 |
27
|
fmpo |
⊢ ( ∀ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ∀ 𝑔 ∈ ( 𝐽 Cn 𝐾 ) { ℎ ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∣ ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) } ∈ 𝒫 ( ( 𝐽 ×t II ) Cn 𝐾 ) ↔ ( 𝑓 ∈ ( 𝐽 Cn 𝐾 ) , 𝑔 ∈ ( 𝐽 Cn 𝐾 ) ↦ { ℎ ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∣ ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) } ) : ( ( 𝐽 Cn 𝐾 ) × ( 𝐽 Cn 𝐾 ) ) ⟶ 𝒫 ( ( 𝐽 ×t II ) Cn 𝐾 ) ) |
29 |
26 28
|
mpbi |
⊢ ( 𝑓 ∈ ( 𝐽 Cn 𝐾 ) , 𝑔 ∈ ( 𝐽 Cn 𝐾 ) ↦ { ℎ ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∣ ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) } ) : ( ( 𝐽 Cn 𝐾 ) × ( 𝐽 Cn 𝐾 ) ) ⟶ 𝒫 ( ( 𝐽 ×t II ) Cn 𝐾 ) |
30 |
|
ovex |
⊢ ( 𝐽 Cn 𝐾 ) ∈ V |
31 |
30 30
|
xpex |
⊢ ( ( 𝐽 Cn 𝐾 ) × ( 𝐽 Cn 𝐾 ) ) ∈ V |
32 |
23
|
pwex |
⊢ 𝒫 ( ( 𝐽 ×t II ) Cn 𝐾 ) ∈ V |
33 |
|
fex2 |
⊢ ( ( ( 𝑓 ∈ ( 𝐽 Cn 𝐾 ) , 𝑔 ∈ ( 𝐽 Cn 𝐾 ) ↦ { ℎ ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∣ ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) } ) : ( ( 𝐽 Cn 𝐾 ) × ( 𝐽 Cn 𝐾 ) ) ⟶ 𝒫 ( ( 𝐽 ×t II ) Cn 𝐾 ) ∧ ( ( 𝐽 Cn 𝐾 ) × ( 𝐽 Cn 𝐾 ) ) ∈ V ∧ 𝒫 ( ( 𝐽 ×t II ) Cn 𝐾 ) ∈ V ) → ( 𝑓 ∈ ( 𝐽 Cn 𝐾 ) , 𝑔 ∈ ( 𝐽 Cn 𝐾 ) ↦ { ℎ ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∣ ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) } ) ∈ V ) |
34 |
29 31 32 33
|
mp3an |
⊢ ( 𝑓 ∈ ( 𝐽 Cn 𝐾 ) , 𝑔 ∈ ( 𝐽 Cn 𝐾 ) ↦ { ℎ ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∣ ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) } ) ∈ V |
35 |
34
|
a1i |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐽 Cn 𝐾 ) , 𝑔 ∈ ( 𝐽 Cn 𝐾 ) ↦ { ℎ ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∣ ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) } ) ∈ V ) |
36 |
5 18 20 22 35
|
ovmpod |
⊢ ( 𝜑 → ( 𝐽 Htpy 𝐾 ) = ( 𝑓 ∈ ( 𝐽 Cn 𝐾 ) , 𝑔 ∈ ( 𝐽 Cn 𝐾 ) ↦ { ℎ ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∣ ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) } ) ) |
37 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑠 ) ) |
38 |
37
|
eqeq2d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ↔ ( 𝑠 ℎ 0 ) = ( 𝐹 ‘ 𝑠 ) ) ) |
39 |
|
fveq1 |
⊢ ( 𝑔 = 𝐺 → ( 𝑔 ‘ 𝑠 ) = ( 𝐺 ‘ 𝑠 ) ) |
40 |
39
|
eqeq2d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ↔ ( 𝑠 ℎ 1 ) = ( 𝐺 ‘ 𝑠 ) ) ) |
41 |
38 40
|
bi2anan9 |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) ↔ ( ( 𝑠 ℎ 0 ) = ( 𝐹 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝐺 ‘ 𝑠 ) ) ) ) |
42 |
41
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) ) → ( ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) ↔ ( ( 𝑠 ℎ 0 ) = ( 𝐹 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝐺 ‘ 𝑠 ) ) ) ) |
43 |
42
|
ralbidv |
⊢ ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) ) → ( ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) ↔ ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 ℎ 0 ) = ( 𝐹 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝐺 ‘ 𝑠 ) ) ) ) |
44 |
43
|
rabbidv |
⊢ ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) ) → { ℎ ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∣ ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 ℎ 0 ) = ( 𝑓 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝑔 ‘ 𝑠 ) ) } = { ℎ ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∣ ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 ℎ 0 ) = ( 𝐹 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝐺 ‘ 𝑠 ) ) } ) |
45 |
23
|
rabex |
⊢ { ℎ ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∣ ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 ℎ 0 ) = ( 𝐹 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝐺 ‘ 𝑠 ) ) } ∈ V |
46 |
45
|
a1i |
⊢ ( 𝜑 → { ℎ ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∣ ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 ℎ 0 ) = ( 𝐹 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝐺 ‘ 𝑠 ) ) } ∈ V ) |
47 |
36 44 2 3 46
|
ovmpod |
⊢ ( 𝜑 → ( 𝐹 ( 𝐽 Htpy 𝐾 ) 𝐺 ) = { ℎ ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∣ ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 ℎ 0 ) = ( 𝐹 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝐺 ‘ 𝑠 ) ) } ) |
48 |
47
|
eleq2d |
⊢ ( 𝜑 → ( 𝐻 ∈ ( 𝐹 ( 𝐽 Htpy 𝐾 ) 𝐺 ) ↔ 𝐻 ∈ { ℎ ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∣ ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 ℎ 0 ) = ( 𝐹 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝐺 ‘ 𝑠 ) ) } ) ) |
49 |
|
oveq |
⊢ ( ℎ = 𝐻 → ( 𝑠 ℎ 0 ) = ( 𝑠 𝐻 0 ) ) |
50 |
49
|
eqeq1d |
⊢ ( ℎ = 𝐻 → ( ( 𝑠 ℎ 0 ) = ( 𝐹 ‘ 𝑠 ) ↔ ( 𝑠 𝐻 0 ) = ( 𝐹 ‘ 𝑠 ) ) ) |
51 |
|
oveq |
⊢ ( ℎ = 𝐻 → ( 𝑠 ℎ 1 ) = ( 𝑠 𝐻 1 ) ) |
52 |
51
|
eqeq1d |
⊢ ( ℎ = 𝐻 → ( ( 𝑠 ℎ 1 ) = ( 𝐺 ‘ 𝑠 ) ↔ ( 𝑠 𝐻 1 ) = ( 𝐺 ‘ 𝑠 ) ) ) |
53 |
50 52
|
anbi12d |
⊢ ( ℎ = 𝐻 → ( ( ( 𝑠 ℎ 0 ) = ( 𝐹 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝐺 ‘ 𝑠 ) ) ↔ ( ( 𝑠 𝐻 0 ) = ( 𝐹 ‘ 𝑠 ) ∧ ( 𝑠 𝐻 1 ) = ( 𝐺 ‘ 𝑠 ) ) ) ) |
54 |
53
|
ralbidv |
⊢ ( ℎ = 𝐻 → ( ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 ℎ 0 ) = ( 𝐹 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝐺 ‘ 𝑠 ) ) ↔ ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 𝐻 0 ) = ( 𝐹 ‘ 𝑠 ) ∧ ( 𝑠 𝐻 1 ) = ( 𝐺 ‘ 𝑠 ) ) ) ) |
55 |
54
|
elrab |
⊢ ( 𝐻 ∈ { ℎ ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∣ ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 ℎ 0 ) = ( 𝐹 ‘ 𝑠 ) ∧ ( 𝑠 ℎ 1 ) = ( 𝐺 ‘ 𝑠 ) ) } ↔ ( 𝐻 ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∧ ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 𝐻 0 ) = ( 𝐹 ‘ 𝑠 ) ∧ ( 𝑠 𝐻 1 ) = ( 𝐺 ‘ 𝑠 ) ) ) ) |
56 |
48 55
|
bitrdi |
⊢ ( 𝜑 → ( 𝐻 ∈ ( 𝐹 ( 𝐽 Htpy 𝐾 ) 𝐺 ) ↔ ( 𝐻 ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∧ ∀ 𝑠 ∈ 𝑋 ( ( 𝑠 𝐻 0 ) = ( 𝐹 ‘ 𝑠 ) ∧ ( 𝑠 𝐻 1 ) = ( 𝐺 ‘ 𝑠 ) ) ) ) ) |