Metamath Proof Explorer


Theorem ishtpy

Description: Membership in the class of homotopies between two continuous functions. (Contributed by Mario Carneiro, 22-Feb-2015) (Revised by Mario Carneiro, 5-Sep-2015)

Ref Expression
Hypotheses ishtpy.1 φ J TopOn X
ishtpy.3 φ F J Cn K
ishtpy.4 φ G J Cn K
Assertion ishtpy φ H F J Htpy K G H J × t II Cn K s X s H 0 = F s s H 1 = G s

Proof

Step Hyp Ref Expression
1 ishtpy.1 φ J TopOn X
2 ishtpy.3 φ F J Cn K
3 ishtpy.4 φ G J Cn K
4 df-htpy Htpy = j Top , k Top f j Cn k , g j Cn k h j × t II Cn k | s j s h 0 = f s s h 1 = g s
5 4 a1i φ Htpy = j Top , k Top f j Cn k , g j Cn k h j × t II Cn k | s j s h 0 = f s s h 1 = g s
6 simprl φ j = J k = K j = J
7 simprr φ j = J k = K k = K
8 6 7 oveq12d φ j = J k = K j Cn k = J Cn K
9 6 oveq1d φ j = J k = K j × t II = J × t II
10 9 7 oveq12d φ j = J k = K j × t II Cn k = J × t II Cn K
11 6 unieqd φ j = J k = K j = J
12 toponuni J TopOn X X = J
13 1 12 syl φ X = J
14 13 adantr φ j = J k = K X = J
15 11 14 eqtr4d φ j = J k = K j = X
16 15 raleqdv φ j = J k = K s j s h 0 = f s s h 1 = g s s X s h 0 = f s s h 1 = g s
17 10 16 rabeqbidv φ j = J k = K h j × t II Cn k | s j s h 0 = f s s h 1 = g s = h J × t II Cn K | s X s h 0 = f s s h 1 = g s
18 8 8 17 mpoeq123dv φ j = J k = K f j Cn k , g j Cn k h j × t II Cn k | s j s h 0 = f s s h 1 = g s = f J Cn K , g J Cn K h J × t II Cn K | s X s h 0 = f s s h 1 = g s
19 topontop J TopOn X J Top
20 1 19 syl φ J Top
21 cntop2 F J Cn K K Top
22 2 21 syl φ K Top
23 ovex J × t II Cn K V
24 ssrab2 h J × t II Cn K | s X s h 0 = f s s h 1 = g s J × t II Cn K
25 23 24 elpwi2 h J × t II Cn K | s X s h 0 = f s s h 1 = g s 𝒫 J × t II Cn K
26 25 rgen2w f J Cn K g J Cn K h J × t II Cn K | s X s h 0 = f s s h 1 = g s 𝒫 J × t II Cn K
27 eqid f J Cn K , g J Cn K h J × t II Cn K | s X s h 0 = f s s h 1 = g s = f J Cn K , g J Cn K h J × t II Cn K | s X s h 0 = f s s h 1 = g s
28 27 fmpo f J Cn K g J Cn K h J × t II Cn K | s X s h 0 = f s s h 1 = g s 𝒫 J × t II Cn K f J Cn K , g J Cn K h J × t II Cn K | s X s h 0 = f s s h 1 = g s : J Cn K × J Cn K 𝒫 J × t II Cn K
29 26 28 mpbi f J Cn K , g J Cn K h J × t II Cn K | s X s h 0 = f s s h 1 = g s : J Cn K × J Cn K 𝒫 J × t II Cn K
30 ovex J Cn K V
31 30 30 xpex J Cn K × J Cn K V
32 23 pwex 𝒫 J × t II Cn K V
33 fex2 f J Cn K , g J Cn K h J × t II Cn K | s X s h 0 = f s s h 1 = g s : J Cn K × J Cn K 𝒫 J × t II Cn K J Cn K × J Cn K V 𝒫 J × t II Cn K V f J Cn K , g J Cn K h J × t II Cn K | s X s h 0 = f s s h 1 = g s V
34 29 31 32 33 mp3an f J Cn K , g J Cn K h J × t II Cn K | s X s h 0 = f s s h 1 = g s V
35 34 a1i φ f J Cn K , g J Cn K h J × t II Cn K | s X s h 0 = f s s h 1 = g s V
36 5 18 20 22 35 ovmpod φ J Htpy K = f J Cn K , g J Cn K h J × t II Cn K | s X s h 0 = f s s h 1 = g s
37 fveq1 f = F f s = F s
38 37 eqeq2d f = F s h 0 = f s s h 0 = F s
39 fveq1 g = G g s = G s
40 39 eqeq2d g = G s h 1 = g s s h 1 = G s
41 38 40 bi2anan9 f = F g = G s h 0 = f s s h 1 = g s s h 0 = F s s h 1 = G s
42 41 adantl φ f = F g = G s h 0 = f s s h 1 = g s s h 0 = F s s h 1 = G s
43 42 ralbidv φ f = F g = G s X s h 0 = f s s h 1 = g s s X s h 0 = F s s h 1 = G s
44 43 rabbidv φ f = F g = G h J × t II Cn K | s X s h 0 = f s s h 1 = g s = h J × t II Cn K | s X s h 0 = F s s h 1 = G s
45 23 rabex h J × t II Cn K | s X s h 0 = F s s h 1 = G s V
46 45 a1i φ h J × t II Cn K | s X s h 0 = F s s h 1 = G s V
47 36 44 2 3 46 ovmpod φ F J Htpy K G = h J × t II Cn K | s X s h 0 = F s s h 1 = G s
48 47 eleq2d φ H F J Htpy K G H h J × t II Cn K | s X s h 0 = F s s h 1 = G s
49 oveq h = H s h 0 = s H 0
50 49 eqeq1d h = H s h 0 = F s s H 0 = F s
51 oveq h = H s h 1 = s H 1
52 51 eqeq1d h = H s h 1 = G s s H 1 = G s
53 50 52 anbi12d h = H s h 0 = F s s h 1 = G s s H 0 = F s s H 1 = G s
54 53 ralbidv h = H s X s h 0 = F s s h 1 = G s s X s H 0 = F s s H 1 = G s
55 54 elrab H h J × t II Cn K | s X s h 0 = F s s h 1 = G s H J × t II Cn K s X s H 0 = F s s H 1 = G s
56 48 55 bitrdi φ H F J Htpy K G H J × t II Cn K s X s H 0 = F s s H 1 = G s