Metamath Proof Explorer


Theorem htpycn

Description: A homotopy is a continuous function. (Contributed by Mario Carneiro, 22-Feb-2015)

Ref Expression
Hypotheses ishtpy.1 φJTopOnX
ishtpy.3 φFJCnK
ishtpy.4 φGJCnK
Assertion htpycn φFJHtpyKGJ×tIICnK

Proof

Step Hyp Ref Expression
1 ishtpy.1 φJTopOnX
2 ishtpy.3 φFJCnK
3 ishtpy.4 φGJCnK
4 1 2 3 ishtpy φhFJHtpyKGhJ×tIICnKsXsh0=Fssh1=Gs
5 simpl hJ×tIICnKsXsh0=Fssh1=GshJ×tIICnK
6 4 5 syl6bi φhFJHtpyKGhJ×tIICnK
7 6 ssrdv φFJHtpyKGJ×tIICnK