Metamath Proof Explorer


Theorem htpycn

Description: A homotopy is a continuous function. (Contributed by Mario Carneiro, 22-Feb-2015)

Ref Expression
Hypotheses ishtpy.1 φ J TopOn X
ishtpy.3 φ F J Cn K
ishtpy.4 φ G J Cn K
Assertion htpycn φ F J Htpy K G J × t II Cn K

Proof

Step Hyp Ref Expression
1 ishtpy.1 φ J TopOn X
2 ishtpy.3 φ F J Cn K
3 ishtpy.4 φ G J Cn K
4 1 2 3 ishtpy φ h F J Htpy K G h J × t II Cn K s X s h 0 = F s s h 1 = G s
5 simpl h J × t II Cn K s X s h 0 = F s s h 1 = G s h J × t II Cn K
6 4 5 syl6bi φ h F J Htpy K G h J × t II Cn K
7 6 ssrdv φ F J Htpy K G J × t II Cn K