Metamath Proof Explorer


Theorem htpycn

Description: A homotopy is a continuous function. (Contributed by Mario Carneiro, 22-Feb-2015)

Ref Expression
Hypotheses ishtpy.1
|- ( ph -> J e. ( TopOn ` X ) )
ishtpy.3
|- ( ph -> F e. ( J Cn K ) )
ishtpy.4
|- ( ph -> G e. ( J Cn K ) )
Assertion htpycn
|- ( ph -> ( F ( J Htpy K ) G ) C_ ( ( J tX II ) Cn K ) )

Proof

Step Hyp Ref Expression
1 ishtpy.1
 |-  ( ph -> J e. ( TopOn ` X ) )
2 ishtpy.3
 |-  ( ph -> F e. ( J Cn K ) )
3 ishtpy.4
 |-  ( ph -> G e. ( J Cn K ) )
4 1 2 3 ishtpy
 |-  ( ph -> ( h e. ( F ( J Htpy K ) G ) <-> ( h e. ( ( J tX II ) Cn K ) /\ A. s e. X ( ( s h 0 ) = ( F ` s ) /\ ( s h 1 ) = ( G ` s ) ) ) ) )
5 simpl
 |-  ( ( h e. ( ( J tX II ) Cn K ) /\ A. s e. X ( ( s h 0 ) = ( F ` s ) /\ ( s h 1 ) = ( G ` s ) ) ) -> h e. ( ( J tX II ) Cn K ) )
6 4 5 syl6bi
 |-  ( ph -> ( h e. ( F ( J Htpy K ) G ) -> h e. ( ( J tX II ) Cn K ) ) )
7 6 ssrdv
 |-  ( ph -> ( F ( J Htpy K ) G ) C_ ( ( J tX II ) Cn K ) )