Step |
Hyp |
Ref |
Expression |
1 |
|
ishtpy.1 |
|- ( ph -> J e. ( TopOn ` X ) ) |
2 |
|
ishtpy.3 |
|- ( ph -> F e. ( J Cn K ) ) |
3 |
|
ishtpy.4 |
|- ( ph -> G e. ( J Cn K ) ) |
4 |
1 2 3
|
ishtpy |
|- ( ph -> ( h e. ( F ( J Htpy K ) G ) <-> ( h e. ( ( J tX II ) Cn K ) /\ A. s e. X ( ( s h 0 ) = ( F ` s ) /\ ( s h 1 ) = ( G ` s ) ) ) ) ) |
5 |
|
simpl |
|- ( ( h e. ( ( J tX II ) Cn K ) /\ A. s e. X ( ( s h 0 ) = ( F ` s ) /\ ( s h 1 ) = ( G ` s ) ) ) -> h e. ( ( J tX II ) Cn K ) ) |
6 |
4 5
|
syl6bi |
|- ( ph -> ( h e. ( F ( J Htpy K ) G ) -> h e. ( ( J tX II ) Cn K ) ) ) |
7 |
6
|
ssrdv |
|- ( ph -> ( F ( J Htpy K ) G ) C_ ( ( J tX II ) Cn K ) ) |