Metamath Proof Explorer


Theorem htpyi

Description: A homotopy evaluated at its endpoints. (Contributed by Mario Carneiro, 22-Feb-2015)

Ref Expression
Hypotheses ishtpy.1
|- ( ph -> J e. ( TopOn ` X ) )
ishtpy.3
|- ( ph -> F e. ( J Cn K ) )
ishtpy.4
|- ( ph -> G e. ( J Cn K ) )
htpyi.1
|- ( ph -> H e. ( F ( J Htpy K ) G ) )
Assertion htpyi
|- ( ( ph /\ A e. X ) -> ( ( A H 0 ) = ( F ` A ) /\ ( A H 1 ) = ( G ` A ) ) )

Proof

Step Hyp Ref Expression
1 ishtpy.1
 |-  ( ph -> J e. ( TopOn ` X ) )
2 ishtpy.3
 |-  ( ph -> F e. ( J Cn K ) )
3 ishtpy.4
 |-  ( ph -> G e. ( J Cn K ) )
4 htpyi.1
 |-  ( ph -> H e. ( F ( J Htpy K ) G ) )
5 1 2 3 ishtpy
 |-  ( ph -> ( H e. ( F ( J Htpy K ) G ) <-> ( H e. ( ( J tX II ) Cn K ) /\ A. s e. X ( ( s H 0 ) = ( F ` s ) /\ ( s H 1 ) = ( G ` s ) ) ) ) )
6 4 5 mpbid
 |-  ( ph -> ( H e. ( ( J tX II ) Cn K ) /\ A. s e. X ( ( s H 0 ) = ( F ` s ) /\ ( s H 1 ) = ( G ` s ) ) ) )
7 6 simprd
 |-  ( ph -> A. s e. X ( ( s H 0 ) = ( F ` s ) /\ ( s H 1 ) = ( G ` s ) ) )
8 oveq1
 |-  ( s = A -> ( s H 0 ) = ( A H 0 ) )
9 fveq2
 |-  ( s = A -> ( F ` s ) = ( F ` A ) )
10 8 9 eqeq12d
 |-  ( s = A -> ( ( s H 0 ) = ( F ` s ) <-> ( A H 0 ) = ( F ` A ) ) )
11 oveq1
 |-  ( s = A -> ( s H 1 ) = ( A H 1 ) )
12 fveq2
 |-  ( s = A -> ( G ` s ) = ( G ` A ) )
13 11 12 eqeq12d
 |-  ( s = A -> ( ( s H 1 ) = ( G ` s ) <-> ( A H 1 ) = ( G ` A ) ) )
14 10 13 anbi12d
 |-  ( s = A -> ( ( ( s H 0 ) = ( F ` s ) /\ ( s H 1 ) = ( G ` s ) ) <-> ( ( A H 0 ) = ( F ` A ) /\ ( A H 1 ) = ( G ` A ) ) ) )
15 14 rspccva
 |-  ( ( A. s e. X ( ( s H 0 ) = ( F ` s ) /\ ( s H 1 ) = ( G ` s ) ) /\ A e. X ) -> ( ( A H 0 ) = ( F ` A ) /\ ( A H 1 ) = ( G ` A ) ) )
16 7 15 sylan
 |-  ( ( ph /\ A e. X ) -> ( ( A H 0 ) = ( F ` A ) /\ ( A H 1 ) = ( G ` A ) ) )