Step |
Hyp |
Ref |
Expression |
1 |
|
ishtpy.1 |
|- ( ph -> J e. ( TopOn ` X ) ) |
2 |
|
ishtpy.3 |
|- ( ph -> F e. ( J Cn K ) ) |
3 |
|
ishtpy.4 |
|- ( ph -> G e. ( J Cn K ) ) |
4 |
|
htpyi.1 |
|- ( ph -> H e. ( F ( J Htpy K ) G ) ) |
5 |
1 2 3
|
ishtpy |
|- ( ph -> ( H e. ( F ( J Htpy K ) G ) <-> ( H e. ( ( J tX II ) Cn K ) /\ A. s e. X ( ( s H 0 ) = ( F ` s ) /\ ( s H 1 ) = ( G ` s ) ) ) ) ) |
6 |
4 5
|
mpbid |
|- ( ph -> ( H e. ( ( J tX II ) Cn K ) /\ A. s e. X ( ( s H 0 ) = ( F ` s ) /\ ( s H 1 ) = ( G ` s ) ) ) ) |
7 |
6
|
simprd |
|- ( ph -> A. s e. X ( ( s H 0 ) = ( F ` s ) /\ ( s H 1 ) = ( G ` s ) ) ) |
8 |
|
oveq1 |
|- ( s = A -> ( s H 0 ) = ( A H 0 ) ) |
9 |
|
fveq2 |
|- ( s = A -> ( F ` s ) = ( F ` A ) ) |
10 |
8 9
|
eqeq12d |
|- ( s = A -> ( ( s H 0 ) = ( F ` s ) <-> ( A H 0 ) = ( F ` A ) ) ) |
11 |
|
oveq1 |
|- ( s = A -> ( s H 1 ) = ( A H 1 ) ) |
12 |
|
fveq2 |
|- ( s = A -> ( G ` s ) = ( G ` A ) ) |
13 |
11 12
|
eqeq12d |
|- ( s = A -> ( ( s H 1 ) = ( G ` s ) <-> ( A H 1 ) = ( G ` A ) ) ) |
14 |
10 13
|
anbi12d |
|- ( s = A -> ( ( ( s H 0 ) = ( F ` s ) /\ ( s H 1 ) = ( G ` s ) ) <-> ( ( A H 0 ) = ( F ` A ) /\ ( A H 1 ) = ( G ` A ) ) ) ) |
15 |
14
|
rspccva |
|- ( ( A. s e. X ( ( s H 0 ) = ( F ` s ) /\ ( s H 1 ) = ( G ` s ) ) /\ A e. X ) -> ( ( A H 0 ) = ( F ` A ) /\ ( A H 1 ) = ( G ` A ) ) ) |
16 |
7 15
|
sylan |
|- ( ( ph /\ A e. X ) -> ( ( A H 0 ) = ( F ` A ) /\ ( A H 1 ) = ( G ` A ) ) ) |