| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ishtpy.1 |  |-  ( ph -> J e. ( TopOn ` X ) ) | 
						
							| 2 |  | ishtpy.3 |  |-  ( ph -> F e. ( J Cn K ) ) | 
						
							| 3 |  | ishtpy.4 |  |-  ( ph -> G e. ( J Cn K ) ) | 
						
							| 4 |  | htpycom.6 |  |-  M = ( x e. X , y e. ( 0 [,] 1 ) |-> ( x H ( 1 - y ) ) ) | 
						
							| 5 |  | htpycom.7 |  |-  ( ph -> H e. ( F ( J Htpy K ) G ) ) | 
						
							| 6 |  | iitopon |  |-  II e. ( TopOn ` ( 0 [,] 1 ) ) | 
						
							| 7 | 6 | a1i |  |-  ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) | 
						
							| 8 | 1 7 | cnmpt1st |  |-  ( ph -> ( x e. X , y e. ( 0 [,] 1 ) |-> x ) e. ( ( J tX II ) Cn J ) ) | 
						
							| 9 | 1 7 | cnmpt2nd |  |-  ( ph -> ( x e. X , y e. ( 0 [,] 1 ) |-> y ) e. ( ( J tX II ) Cn II ) ) | 
						
							| 10 |  | iirevcn |  |-  ( z e. ( 0 [,] 1 ) |-> ( 1 - z ) ) e. ( II Cn II ) | 
						
							| 11 | 10 | a1i |  |-  ( ph -> ( z e. ( 0 [,] 1 ) |-> ( 1 - z ) ) e. ( II Cn II ) ) | 
						
							| 12 |  | oveq2 |  |-  ( z = y -> ( 1 - z ) = ( 1 - y ) ) | 
						
							| 13 | 1 7 9 7 11 12 | cnmpt21 |  |-  ( ph -> ( x e. X , y e. ( 0 [,] 1 ) |-> ( 1 - y ) ) e. ( ( J tX II ) Cn II ) ) | 
						
							| 14 | 1 2 3 | htpycn |  |-  ( ph -> ( F ( J Htpy K ) G ) C_ ( ( J tX II ) Cn K ) ) | 
						
							| 15 | 14 5 | sseldd |  |-  ( ph -> H e. ( ( J tX II ) Cn K ) ) | 
						
							| 16 | 1 7 8 13 15 | cnmpt22f |  |-  ( ph -> ( x e. X , y e. ( 0 [,] 1 ) |-> ( x H ( 1 - y ) ) ) e. ( ( J tX II ) Cn K ) ) | 
						
							| 17 | 4 16 | eqeltrid |  |-  ( ph -> M e. ( ( J tX II ) Cn K ) ) | 
						
							| 18 |  | simpr |  |-  ( ( ph /\ t e. X ) -> t e. X ) | 
						
							| 19 |  | 0elunit |  |-  0 e. ( 0 [,] 1 ) | 
						
							| 20 |  | oveq1 |  |-  ( x = t -> ( x H ( 1 - y ) ) = ( t H ( 1 - y ) ) ) | 
						
							| 21 |  | oveq2 |  |-  ( y = 0 -> ( 1 - y ) = ( 1 - 0 ) ) | 
						
							| 22 |  | 1m0e1 |  |-  ( 1 - 0 ) = 1 | 
						
							| 23 | 21 22 | eqtrdi |  |-  ( y = 0 -> ( 1 - y ) = 1 ) | 
						
							| 24 | 23 | oveq2d |  |-  ( y = 0 -> ( t H ( 1 - y ) ) = ( t H 1 ) ) | 
						
							| 25 |  | ovex |  |-  ( t H 1 ) e. _V | 
						
							| 26 | 20 24 4 25 | ovmpo |  |-  ( ( t e. X /\ 0 e. ( 0 [,] 1 ) ) -> ( t M 0 ) = ( t H 1 ) ) | 
						
							| 27 | 18 19 26 | sylancl |  |-  ( ( ph /\ t e. X ) -> ( t M 0 ) = ( t H 1 ) ) | 
						
							| 28 | 1 2 3 5 | htpyi |  |-  ( ( ph /\ t e. X ) -> ( ( t H 0 ) = ( F ` t ) /\ ( t H 1 ) = ( G ` t ) ) ) | 
						
							| 29 | 28 | simprd |  |-  ( ( ph /\ t e. X ) -> ( t H 1 ) = ( G ` t ) ) | 
						
							| 30 | 27 29 | eqtrd |  |-  ( ( ph /\ t e. X ) -> ( t M 0 ) = ( G ` t ) ) | 
						
							| 31 |  | 1elunit |  |-  1 e. ( 0 [,] 1 ) | 
						
							| 32 |  | oveq2 |  |-  ( y = 1 -> ( 1 - y ) = ( 1 - 1 ) ) | 
						
							| 33 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 34 | 32 33 | eqtrdi |  |-  ( y = 1 -> ( 1 - y ) = 0 ) | 
						
							| 35 | 34 | oveq2d |  |-  ( y = 1 -> ( t H ( 1 - y ) ) = ( t H 0 ) ) | 
						
							| 36 |  | ovex |  |-  ( t H 0 ) e. _V | 
						
							| 37 | 20 35 4 36 | ovmpo |  |-  ( ( t e. X /\ 1 e. ( 0 [,] 1 ) ) -> ( t M 1 ) = ( t H 0 ) ) | 
						
							| 38 | 18 31 37 | sylancl |  |-  ( ( ph /\ t e. X ) -> ( t M 1 ) = ( t H 0 ) ) | 
						
							| 39 | 28 | simpld |  |-  ( ( ph /\ t e. X ) -> ( t H 0 ) = ( F ` t ) ) | 
						
							| 40 | 38 39 | eqtrd |  |-  ( ( ph /\ t e. X ) -> ( t M 1 ) = ( F ` t ) ) | 
						
							| 41 | 1 3 2 17 30 40 | ishtpyd |  |-  ( ph -> M e. ( G ( J Htpy K ) F ) ) |