Step |
Hyp |
Ref |
Expression |
1 |
|
ishtpy.1 |
|- ( ph -> J e. ( TopOn ` X ) ) |
2 |
|
ishtpy.3 |
|- ( ph -> F e. ( J Cn K ) ) |
3 |
|
ishtpy.4 |
|- ( ph -> G e. ( J Cn K ) ) |
4 |
|
htpycom.6 |
|- M = ( x e. X , y e. ( 0 [,] 1 ) |-> ( x H ( 1 - y ) ) ) |
5 |
|
htpycom.7 |
|- ( ph -> H e. ( F ( J Htpy K ) G ) ) |
6 |
|
iitopon |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |
7 |
6
|
a1i |
|- ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) |
8 |
1 7
|
cnmpt1st |
|- ( ph -> ( x e. X , y e. ( 0 [,] 1 ) |-> x ) e. ( ( J tX II ) Cn J ) ) |
9 |
1 7
|
cnmpt2nd |
|- ( ph -> ( x e. X , y e. ( 0 [,] 1 ) |-> y ) e. ( ( J tX II ) Cn II ) ) |
10 |
|
iirevcn |
|- ( z e. ( 0 [,] 1 ) |-> ( 1 - z ) ) e. ( II Cn II ) |
11 |
10
|
a1i |
|- ( ph -> ( z e. ( 0 [,] 1 ) |-> ( 1 - z ) ) e. ( II Cn II ) ) |
12 |
|
oveq2 |
|- ( z = y -> ( 1 - z ) = ( 1 - y ) ) |
13 |
1 7 9 7 11 12
|
cnmpt21 |
|- ( ph -> ( x e. X , y e. ( 0 [,] 1 ) |-> ( 1 - y ) ) e. ( ( J tX II ) Cn II ) ) |
14 |
1 2 3
|
htpycn |
|- ( ph -> ( F ( J Htpy K ) G ) C_ ( ( J tX II ) Cn K ) ) |
15 |
14 5
|
sseldd |
|- ( ph -> H e. ( ( J tX II ) Cn K ) ) |
16 |
1 7 8 13 15
|
cnmpt22f |
|- ( ph -> ( x e. X , y e. ( 0 [,] 1 ) |-> ( x H ( 1 - y ) ) ) e. ( ( J tX II ) Cn K ) ) |
17 |
4 16
|
eqeltrid |
|- ( ph -> M e. ( ( J tX II ) Cn K ) ) |
18 |
|
simpr |
|- ( ( ph /\ t e. X ) -> t e. X ) |
19 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
20 |
|
oveq1 |
|- ( x = t -> ( x H ( 1 - y ) ) = ( t H ( 1 - y ) ) ) |
21 |
|
oveq2 |
|- ( y = 0 -> ( 1 - y ) = ( 1 - 0 ) ) |
22 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
23 |
21 22
|
eqtrdi |
|- ( y = 0 -> ( 1 - y ) = 1 ) |
24 |
23
|
oveq2d |
|- ( y = 0 -> ( t H ( 1 - y ) ) = ( t H 1 ) ) |
25 |
|
ovex |
|- ( t H 1 ) e. _V |
26 |
20 24 4 25
|
ovmpo |
|- ( ( t e. X /\ 0 e. ( 0 [,] 1 ) ) -> ( t M 0 ) = ( t H 1 ) ) |
27 |
18 19 26
|
sylancl |
|- ( ( ph /\ t e. X ) -> ( t M 0 ) = ( t H 1 ) ) |
28 |
1 2 3 5
|
htpyi |
|- ( ( ph /\ t e. X ) -> ( ( t H 0 ) = ( F ` t ) /\ ( t H 1 ) = ( G ` t ) ) ) |
29 |
28
|
simprd |
|- ( ( ph /\ t e. X ) -> ( t H 1 ) = ( G ` t ) ) |
30 |
27 29
|
eqtrd |
|- ( ( ph /\ t e. X ) -> ( t M 0 ) = ( G ` t ) ) |
31 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
32 |
|
oveq2 |
|- ( y = 1 -> ( 1 - y ) = ( 1 - 1 ) ) |
33 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
34 |
32 33
|
eqtrdi |
|- ( y = 1 -> ( 1 - y ) = 0 ) |
35 |
34
|
oveq2d |
|- ( y = 1 -> ( t H ( 1 - y ) ) = ( t H 0 ) ) |
36 |
|
ovex |
|- ( t H 0 ) e. _V |
37 |
20 35 4 36
|
ovmpo |
|- ( ( t e. X /\ 1 e. ( 0 [,] 1 ) ) -> ( t M 1 ) = ( t H 0 ) ) |
38 |
18 31 37
|
sylancl |
|- ( ( ph /\ t e. X ) -> ( t M 1 ) = ( t H 0 ) ) |
39 |
28
|
simpld |
|- ( ( ph /\ t e. X ) -> ( t H 0 ) = ( F ` t ) ) |
40 |
38 39
|
eqtrd |
|- ( ( ph /\ t e. X ) -> ( t M 1 ) = ( F ` t ) ) |
41 |
1 3 2 17 30 40
|
ishtpyd |
|- ( ph -> M e. ( G ( J Htpy K ) F ) ) |