| Step | Hyp | Ref | Expression | 
						
							| 1 |  | htpyid.1 |  |-  G = ( x e. X , y e. ( 0 [,] 1 ) |-> ( F ` x ) ) | 
						
							| 2 |  | htpyid.2 |  |-  ( ph -> J e. ( TopOn ` X ) ) | 
						
							| 3 |  | htpyid.4 |  |-  ( ph -> F e. ( J Cn K ) ) | 
						
							| 4 |  | iitopon |  |-  II e. ( TopOn ` ( 0 [,] 1 ) ) | 
						
							| 5 | 4 | a1i |  |-  ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) | 
						
							| 6 | 2 5 | cnmpt1st |  |-  ( ph -> ( x e. X , y e. ( 0 [,] 1 ) |-> x ) e. ( ( J tX II ) Cn J ) ) | 
						
							| 7 | 2 5 6 3 | cnmpt21f |  |-  ( ph -> ( x e. X , y e. ( 0 [,] 1 ) |-> ( F ` x ) ) e. ( ( J tX II ) Cn K ) ) | 
						
							| 8 | 1 7 | eqeltrid |  |-  ( ph -> G e. ( ( J tX II ) Cn K ) ) | 
						
							| 9 |  | simpr |  |-  ( ( ph /\ s e. X ) -> s e. X ) | 
						
							| 10 |  | 0elunit |  |-  0 e. ( 0 [,] 1 ) | 
						
							| 11 |  | fveq2 |  |-  ( x = s -> ( F ` x ) = ( F ` s ) ) | 
						
							| 12 |  | eqidd |  |-  ( y = 0 -> ( F ` s ) = ( F ` s ) ) | 
						
							| 13 |  | fvex |  |-  ( F ` s ) e. _V | 
						
							| 14 | 11 12 1 13 | ovmpo |  |-  ( ( s e. X /\ 0 e. ( 0 [,] 1 ) ) -> ( s G 0 ) = ( F ` s ) ) | 
						
							| 15 | 9 10 14 | sylancl |  |-  ( ( ph /\ s e. X ) -> ( s G 0 ) = ( F ` s ) ) | 
						
							| 16 |  | 1elunit |  |-  1 e. ( 0 [,] 1 ) | 
						
							| 17 |  | eqidd |  |-  ( y = 1 -> ( F ` s ) = ( F ` s ) ) | 
						
							| 18 | 11 17 1 13 | ovmpo |  |-  ( ( s e. X /\ 1 e. ( 0 [,] 1 ) ) -> ( s G 1 ) = ( F ` s ) ) | 
						
							| 19 | 9 16 18 | sylancl |  |-  ( ( ph /\ s e. X ) -> ( s G 1 ) = ( F ` s ) ) | 
						
							| 20 | 2 3 3 8 15 19 | ishtpyd |  |-  ( ph -> G e. ( F ( J Htpy K ) F ) ) |