Step |
Hyp |
Ref |
Expression |
1 |
|
htpyid.1 |
|- G = ( x e. X , y e. ( 0 [,] 1 ) |-> ( F ` x ) ) |
2 |
|
htpyid.2 |
|- ( ph -> J e. ( TopOn ` X ) ) |
3 |
|
htpyid.4 |
|- ( ph -> F e. ( J Cn K ) ) |
4 |
|
iitopon |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |
5 |
4
|
a1i |
|- ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) |
6 |
2 5
|
cnmpt1st |
|- ( ph -> ( x e. X , y e. ( 0 [,] 1 ) |-> x ) e. ( ( J tX II ) Cn J ) ) |
7 |
2 5 6 3
|
cnmpt21f |
|- ( ph -> ( x e. X , y e. ( 0 [,] 1 ) |-> ( F ` x ) ) e. ( ( J tX II ) Cn K ) ) |
8 |
1 7
|
eqeltrid |
|- ( ph -> G e. ( ( J tX II ) Cn K ) ) |
9 |
|
simpr |
|- ( ( ph /\ s e. X ) -> s e. X ) |
10 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
11 |
|
fveq2 |
|- ( x = s -> ( F ` x ) = ( F ` s ) ) |
12 |
|
eqidd |
|- ( y = 0 -> ( F ` s ) = ( F ` s ) ) |
13 |
|
fvex |
|- ( F ` s ) e. _V |
14 |
11 12 1 13
|
ovmpo |
|- ( ( s e. X /\ 0 e. ( 0 [,] 1 ) ) -> ( s G 0 ) = ( F ` s ) ) |
15 |
9 10 14
|
sylancl |
|- ( ( ph /\ s e. X ) -> ( s G 0 ) = ( F ` s ) ) |
16 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
17 |
|
eqidd |
|- ( y = 1 -> ( F ` s ) = ( F ` s ) ) |
18 |
11 17 1 13
|
ovmpo |
|- ( ( s e. X /\ 1 e. ( 0 [,] 1 ) ) -> ( s G 1 ) = ( F ` s ) ) |
19 |
9 16 18
|
sylancl |
|- ( ( ph /\ s e. X ) -> ( s G 1 ) = ( F ` s ) ) |
20 |
2 3 3 8 15 19
|
ishtpyd |
|- ( ph -> G e. ( F ( J Htpy K ) F ) ) |