Step |
Hyp |
Ref |
Expression |
1 |
|
htpyco1.n |
|- N = ( x e. X , y e. ( 0 [,] 1 ) |-> ( ( P ` x ) H y ) ) |
2 |
|
htpyco1.j |
|- ( ph -> J e. ( TopOn ` X ) ) |
3 |
|
htpyco1.p |
|- ( ph -> P e. ( J Cn K ) ) |
4 |
|
htpyco1.f |
|- ( ph -> F e. ( K Cn L ) ) |
5 |
|
htpyco1.g |
|- ( ph -> G e. ( K Cn L ) ) |
6 |
|
htpyco1.h |
|- ( ph -> H e. ( F ( K Htpy L ) G ) ) |
7 |
|
cnco |
|- ( ( P e. ( J Cn K ) /\ F e. ( K Cn L ) ) -> ( F o. P ) e. ( J Cn L ) ) |
8 |
3 4 7
|
syl2anc |
|- ( ph -> ( F o. P ) e. ( J Cn L ) ) |
9 |
|
cnco |
|- ( ( P e. ( J Cn K ) /\ G e. ( K Cn L ) ) -> ( G o. P ) e. ( J Cn L ) ) |
10 |
3 5 9
|
syl2anc |
|- ( ph -> ( G o. P ) e. ( J Cn L ) ) |
11 |
|
iitopon |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |
12 |
11
|
a1i |
|- ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) |
13 |
2 12
|
cnmpt1st |
|- ( ph -> ( x e. X , y e. ( 0 [,] 1 ) |-> x ) e. ( ( J tX II ) Cn J ) ) |
14 |
2 12 13 3
|
cnmpt21f |
|- ( ph -> ( x e. X , y e. ( 0 [,] 1 ) |-> ( P ` x ) ) e. ( ( J tX II ) Cn K ) ) |
15 |
2 12
|
cnmpt2nd |
|- ( ph -> ( x e. X , y e. ( 0 [,] 1 ) |-> y ) e. ( ( J tX II ) Cn II ) ) |
16 |
|
cntop2 |
|- ( P e. ( J Cn K ) -> K e. Top ) |
17 |
3 16
|
syl |
|- ( ph -> K e. Top ) |
18 |
|
toptopon2 |
|- ( K e. Top <-> K e. ( TopOn ` U. K ) ) |
19 |
17 18
|
sylib |
|- ( ph -> K e. ( TopOn ` U. K ) ) |
20 |
19 4 5
|
htpycn |
|- ( ph -> ( F ( K Htpy L ) G ) C_ ( ( K tX II ) Cn L ) ) |
21 |
20 6
|
sseldd |
|- ( ph -> H e. ( ( K tX II ) Cn L ) ) |
22 |
2 12 14 15 21
|
cnmpt22f |
|- ( ph -> ( x e. X , y e. ( 0 [,] 1 ) |-> ( ( P ` x ) H y ) ) e. ( ( J tX II ) Cn L ) ) |
23 |
1 22
|
eqeltrid |
|- ( ph -> N e. ( ( J tX II ) Cn L ) ) |
24 |
|
cnf2 |
|- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` U. K ) /\ P e. ( J Cn K ) ) -> P : X --> U. K ) |
25 |
2 19 3 24
|
syl3anc |
|- ( ph -> P : X --> U. K ) |
26 |
25
|
ffvelrnda |
|- ( ( ph /\ s e. X ) -> ( P ` s ) e. U. K ) |
27 |
19 4 5 6
|
htpyi |
|- ( ( ph /\ ( P ` s ) e. U. K ) -> ( ( ( P ` s ) H 0 ) = ( F ` ( P ` s ) ) /\ ( ( P ` s ) H 1 ) = ( G ` ( P ` s ) ) ) ) |
28 |
26 27
|
syldan |
|- ( ( ph /\ s e. X ) -> ( ( ( P ` s ) H 0 ) = ( F ` ( P ` s ) ) /\ ( ( P ` s ) H 1 ) = ( G ` ( P ` s ) ) ) ) |
29 |
28
|
simpld |
|- ( ( ph /\ s e. X ) -> ( ( P ` s ) H 0 ) = ( F ` ( P ` s ) ) ) |
30 |
|
simpr |
|- ( ( ph /\ s e. X ) -> s e. X ) |
31 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
32 |
|
fveq2 |
|- ( x = s -> ( P ` x ) = ( P ` s ) ) |
33 |
|
id |
|- ( y = 0 -> y = 0 ) |
34 |
32 33
|
oveqan12d |
|- ( ( x = s /\ y = 0 ) -> ( ( P ` x ) H y ) = ( ( P ` s ) H 0 ) ) |
35 |
|
ovex |
|- ( ( P ` s ) H 0 ) e. _V |
36 |
34 1 35
|
ovmpoa |
|- ( ( s e. X /\ 0 e. ( 0 [,] 1 ) ) -> ( s N 0 ) = ( ( P ` s ) H 0 ) ) |
37 |
30 31 36
|
sylancl |
|- ( ( ph /\ s e. X ) -> ( s N 0 ) = ( ( P ` s ) H 0 ) ) |
38 |
|
fvco3 |
|- ( ( P : X --> U. K /\ s e. X ) -> ( ( F o. P ) ` s ) = ( F ` ( P ` s ) ) ) |
39 |
25 38
|
sylan |
|- ( ( ph /\ s e. X ) -> ( ( F o. P ) ` s ) = ( F ` ( P ` s ) ) ) |
40 |
29 37 39
|
3eqtr4d |
|- ( ( ph /\ s e. X ) -> ( s N 0 ) = ( ( F o. P ) ` s ) ) |
41 |
28
|
simprd |
|- ( ( ph /\ s e. X ) -> ( ( P ` s ) H 1 ) = ( G ` ( P ` s ) ) ) |
42 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
43 |
|
id |
|- ( y = 1 -> y = 1 ) |
44 |
32 43
|
oveqan12d |
|- ( ( x = s /\ y = 1 ) -> ( ( P ` x ) H y ) = ( ( P ` s ) H 1 ) ) |
45 |
|
ovex |
|- ( ( P ` s ) H 1 ) e. _V |
46 |
44 1 45
|
ovmpoa |
|- ( ( s e. X /\ 1 e. ( 0 [,] 1 ) ) -> ( s N 1 ) = ( ( P ` s ) H 1 ) ) |
47 |
30 42 46
|
sylancl |
|- ( ( ph /\ s e. X ) -> ( s N 1 ) = ( ( P ` s ) H 1 ) ) |
48 |
|
fvco3 |
|- ( ( P : X --> U. K /\ s e. X ) -> ( ( G o. P ) ` s ) = ( G ` ( P ` s ) ) ) |
49 |
25 48
|
sylan |
|- ( ( ph /\ s e. X ) -> ( ( G o. P ) ` s ) = ( G ` ( P ` s ) ) ) |
50 |
41 47 49
|
3eqtr4d |
|- ( ( ph /\ s e. X ) -> ( s N 1 ) = ( ( G o. P ) ` s ) ) |
51 |
2 8 10 23 40 50
|
ishtpyd |
|- ( ph -> N e. ( ( F o. P ) ( J Htpy L ) ( G o. P ) ) ) |