| Step | Hyp | Ref | Expression | 
						
							| 1 |  | htpyco1.n |  |-  N = ( x e. X , y e. ( 0 [,] 1 ) |-> ( ( P ` x ) H y ) ) | 
						
							| 2 |  | htpyco1.j |  |-  ( ph -> J e. ( TopOn ` X ) ) | 
						
							| 3 |  | htpyco1.p |  |-  ( ph -> P e. ( J Cn K ) ) | 
						
							| 4 |  | htpyco1.f |  |-  ( ph -> F e. ( K Cn L ) ) | 
						
							| 5 |  | htpyco1.g |  |-  ( ph -> G e. ( K Cn L ) ) | 
						
							| 6 |  | htpyco1.h |  |-  ( ph -> H e. ( F ( K Htpy L ) G ) ) | 
						
							| 7 |  | cnco |  |-  ( ( P e. ( J Cn K ) /\ F e. ( K Cn L ) ) -> ( F o. P ) e. ( J Cn L ) ) | 
						
							| 8 | 3 4 7 | syl2anc |  |-  ( ph -> ( F o. P ) e. ( J Cn L ) ) | 
						
							| 9 |  | cnco |  |-  ( ( P e. ( J Cn K ) /\ G e. ( K Cn L ) ) -> ( G o. P ) e. ( J Cn L ) ) | 
						
							| 10 | 3 5 9 | syl2anc |  |-  ( ph -> ( G o. P ) e. ( J Cn L ) ) | 
						
							| 11 |  | iitopon |  |-  II e. ( TopOn ` ( 0 [,] 1 ) ) | 
						
							| 12 | 11 | a1i |  |-  ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) | 
						
							| 13 | 2 12 | cnmpt1st |  |-  ( ph -> ( x e. X , y e. ( 0 [,] 1 ) |-> x ) e. ( ( J tX II ) Cn J ) ) | 
						
							| 14 | 2 12 13 3 | cnmpt21f |  |-  ( ph -> ( x e. X , y e. ( 0 [,] 1 ) |-> ( P ` x ) ) e. ( ( J tX II ) Cn K ) ) | 
						
							| 15 | 2 12 | cnmpt2nd |  |-  ( ph -> ( x e. X , y e. ( 0 [,] 1 ) |-> y ) e. ( ( J tX II ) Cn II ) ) | 
						
							| 16 |  | cntop2 |  |-  ( P e. ( J Cn K ) -> K e. Top ) | 
						
							| 17 | 3 16 | syl |  |-  ( ph -> K e. Top ) | 
						
							| 18 |  | toptopon2 |  |-  ( K e. Top <-> K e. ( TopOn ` U. K ) ) | 
						
							| 19 | 17 18 | sylib |  |-  ( ph -> K e. ( TopOn ` U. K ) ) | 
						
							| 20 | 19 4 5 | htpycn |  |-  ( ph -> ( F ( K Htpy L ) G ) C_ ( ( K tX II ) Cn L ) ) | 
						
							| 21 | 20 6 | sseldd |  |-  ( ph -> H e. ( ( K tX II ) Cn L ) ) | 
						
							| 22 | 2 12 14 15 21 | cnmpt22f |  |-  ( ph -> ( x e. X , y e. ( 0 [,] 1 ) |-> ( ( P ` x ) H y ) ) e. ( ( J tX II ) Cn L ) ) | 
						
							| 23 | 1 22 | eqeltrid |  |-  ( ph -> N e. ( ( J tX II ) Cn L ) ) | 
						
							| 24 |  | cnf2 |  |-  ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` U. K ) /\ P e. ( J Cn K ) ) -> P : X --> U. K ) | 
						
							| 25 | 2 19 3 24 | syl3anc |  |-  ( ph -> P : X --> U. K ) | 
						
							| 26 | 25 | ffvelcdmda |  |-  ( ( ph /\ s e. X ) -> ( P ` s ) e. U. K ) | 
						
							| 27 | 19 4 5 6 | htpyi |  |-  ( ( ph /\ ( P ` s ) e. U. K ) -> ( ( ( P ` s ) H 0 ) = ( F ` ( P ` s ) ) /\ ( ( P ` s ) H 1 ) = ( G ` ( P ` s ) ) ) ) | 
						
							| 28 | 26 27 | syldan |  |-  ( ( ph /\ s e. X ) -> ( ( ( P ` s ) H 0 ) = ( F ` ( P ` s ) ) /\ ( ( P ` s ) H 1 ) = ( G ` ( P ` s ) ) ) ) | 
						
							| 29 | 28 | simpld |  |-  ( ( ph /\ s e. X ) -> ( ( P ` s ) H 0 ) = ( F ` ( P ` s ) ) ) | 
						
							| 30 |  | simpr |  |-  ( ( ph /\ s e. X ) -> s e. X ) | 
						
							| 31 |  | 0elunit |  |-  0 e. ( 0 [,] 1 ) | 
						
							| 32 |  | fveq2 |  |-  ( x = s -> ( P ` x ) = ( P ` s ) ) | 
						
							| 33 |  | id |  |-  ( y = 0 -> y = 0 ) | 
						
							| 34 | 32 33 | oveqan12d |  |-  ( ( x = s /\ y = 0 ) -> ( ( P ` x ) H y ) = ( ( P ` s ) H 0 ) ) | 
						
							| 35 |  | ovex |  |-  ( ( P ` s ) H 0 ) e. _V | 
						
							| 36 | 34 1 35 | ovmpoa |  |-  ( ( s e. X /\ 0 e. ( 0 [,] 1 ) ) -> ( s N 0 ) = ( ( P ` s ) H 0 ) ) | 
						
							| 37 | 30 31 36 | sylancl |  |-  ( ( ph /\ s e. X ) -> ( s N 0 ) = ( ( P ` s ) H 0 ) ) | 
						
							| 38 |  | fvco3 |  |-  ( ( P : X --> U. K /\ s e. X ) -> ( ( F o. P ) ` s ) = ( F ` ( P ` s ) ) ) | 
						
							| 39 | 25 38 | sylan |  |-  ( ( ph /\ s e. X ) -> ( ( F o. P ) ` s ) = ( F ` ( P ` s ) ) ) | 
						
							| 40 | 29 37 39 | 3eqtr4d |  |-  ( ( ph /\ s e. X ) -> ( s N 0 ) = ( ( F o. P ) ` s ) ) | 
						
							| 41 | 28 | simprd |  |-  ( ( ph /\ s e. X ) -> ( ( P ` s ) H 1 ) = ( G ` ( P ` s ) ) ) | 
						
							| 42 |  | 1elunit |  |-  1 e. ( 0 [,] 1 ) | 
						
							| 43 |  | id |  |-  ( y = 1 -> y = 1 ) | 
						
							| 44 | 32 43 | oveqan12d |  |-  ( ( x = s /\ y = 1 ) -> ( ( P ` x ) H y ) = ( ( P ` s ) H 1 ) ) | 
						
							| 45 |  | ovex |  |-  ( ( P ` s ) H 1 ) e. _V | 
						
							| 46 | 44 1 45 | ovmpoa |  |-  ( ( s e. X /\ 1 e. ( 0 [,] 1 ) ) -> ( s N 1 ) = ( ( P ` s ) H 1 ) ) | 
						
							| 47 | 30 42 46 | sylancl |  |-  ( ( ph /\ s e. X ) -> ( s N 1 ) = ( ( P ` s ) H 1 ) ) | 
						
							| 48 |  | fvco3 |  |-  ( ( P : X --> U. K /\ s e. X ) -> ( ( G o. P ) ` s ) = ( G ` ( P ` s ) ) ) | 
						
							| 49 | 25 48 | sylan |  |-  ( ( ph /\ s e. X ) -> ( ( G o. P ) ` s ) = ( G ` ( P ` s ) ) ) | 
						
							| 50 | 41 47 49 | 3eqtr4d |  |-  ( ( ph /\ s e. X ) -> ( s N 1 ) = ( ( G o. P ) ` s ) ) | 
						
							| 51 | 2 8 10 23 40 50 | ishtpyd |  |-  ( ph -> N e. ( ( F o. P ) ( J Htpy L ) ( G o. P ) ) ) |