| Step |
Hyp |
Ref |
Expression |
| 1 |
|
htpyco1.n |
⊢ 𝑁 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑃 ‘ 𝑥 ) 𝐻 𝑦 ) ) |
| 2 |
|
htpyco1.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 3 |
|
htpyco1.p |
⊢ ( 𝜑 → 𝑃 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 4 |
|
htpyco1.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐾 Cn 𝐿 ) ) |
| 5 |
|
htpyco1.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐾 Cn 𝐿 ) ) |
| 6 |
|
htpyco1.h |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝐹 ( 𝐾 Htpy 𝐿 ) 𝐺 ) ) |
| 7 |
|
cnco |
⊢ ( ( 𝑃 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐹 ∈ ( 𝐾 Cn 𝐿 ) ) → ( 𝐹 ∘ 𝑃 ) ∈ ( 𝐽 Cn 𝐿 ) ) |
| 8 |
3 4 7
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝑃 ) ∈ ( 𝐽 Cn 𝐿 ) ) |
| 9 |
|
cnco |
⊢ ( ( 𝑃 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐺 ∈ ( 𝐾 Cn 𝐿 ) ) → ( 𝐺 ∘ 𝑃 ) ∈ ( 𝐽 Cn 𝐿 ) ) |
| 10 |
3 5 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝑃 ) ∈ ( 𝐽 Cn 𝐿 ) ) |
| 11 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
| 13 |
2 12
|
cnmpt1st |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ ( 0 [,] 1 ) ↦ 𝑥 ) ∈ ( ( 𝐽 ×t II ) Cn 𝐽 ) ) |
| 14 |
2 12 13 3
|
cnmpt21f |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑃 ‘ 𝑥 ) ) ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ) |
| 15 |
2 12
|
cnmpt2nd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ ( 0 [,] 1 ) ↦ 𝑦 ) ∈ ( ( 𝐽 ×t II ) Cn II ) ) |
| 16 |
|
cntop2 |
⊢ ( 𝑃 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) |
| 17 |
3 16
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 18 |
|
toptopon2 |
⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 19 |
17 18
|
sylib |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 20 |
19 4 5
|
htpycn |
⊢ ( 𝜑 → ( 𝐹 ( 𝐾 Htpy 𝐿 ) 𝐺 ) ⊆ ( ( 𝐾 ×t II ) Cn 𝐿 ) ) |
| 21 |
20 6
|
sseldd |
⊢ ( 𝜑 → 𝐻 ∈ ( ( 𝐾 ×t II ) Cn 𝐿 ) ) |
| 22 |
2 12 14 15 21
|
cnmpt22f |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑃 ‘ 𝑥 ) 𝐻 𝑦 ) ) ∈ ( ( 𝐽 ×t II ) Cn 𝐿 ) ) |
| 23 |
1 22
|
eqeltrid |
⊢ ( 𝜑 → 𝑁 ∈ ( ( 𝐽 ×t II ) Cn 𝐿 ) ) |
| 24 |
|
cnf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ 𝑃 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝑃 : 𝑋 ⟶ ∪ 𝐾 ) |
| 25 |
2 19 3 24
|
syl3anc |
⊢ ( 𝜑 → 𝑃 : 𝑋 ⟶ ∪ 𝐾 ) |
| 26 |
25
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( 𝑃 ‘ 𝑠 ) ∈ ∪ 𝐾 ) |
| 27 |
19 4 5 6
|
htpyi |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑠 ) ∈ ∪ 𝐾 ) → ( ( ( 𝑃 ‘ 𝑠 ) 𝐻 0 ) = ( 𝐹 ‘ ( 𝑃 ‘ 𝑠 ) ) ∧ ( ( 𝑃 ‘ 𝑠 ) 𝐻 1 ) = ( 𝐺 ‘ ( 𝑃 ‘ 𝑠 ) ) ) ) |
| 28 |
26 27
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( ( ( 𝑃 ‘ 𝑠 ) 𝐻 0 ) = ( 𝐹 ‘ ( 𝑃 ‘ 𝑠 ) ) ∧ ( ( 𝑃 ‘ 𝑠 ) 𝐻 1 ) = ( 𝐺 ‘ ( 𝑃 ‘ 𝑠 ) ) ) ) |
| 29 |
28
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( ( 𝑃 ‘ 𝑠 ) 𝐻 0 ) = ( 𝐹 ‘ ( 𝑃 ‘ 𝑠 ) ) ) |
| 30 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → 𝑠 ∈ 𝑋 ) |
| 31 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
| 32 |
|
fveq2 |
⊢ ( 𝑥 = 𝑠 → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑠 ) ) |
| 33 |
|
id |
⊢ ( 𝑦 = 0 → 𝑦 = 0 ) |
| 34 |
32 33
|
oveqan12d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → ( ( 𝑃 ‘ 𝑥 ) 𝐻 𝑦 ) = ( ( 𝑃 ‘ 𝑠 ) 𝐻 0 ) ) |
| 35 |
|
ovex |
⊢ ( ( 𝑃 ‘ 𝑠 ) 𝐻 0 ) ∈ V |
| 36 |
34 1 35
|
ovmpoa |
⊢ ( ( 𝑠 ∈ 𝑋 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝑁 0 ) = ( ( 𝑃 ‘ 𝑠 ) 𝐻 0 ) ) |
| 37 |
30 31 36
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( 𝑠 𝑁 0 ) = ( ( 𝑃 ‘ 𝑠 ) 𝐻 0 ) ) |
| 38 |
|
fvco3 |
⊢ ( ( 𝑃 : 𝑋 ⟶ ∪ 𝐾 ∧ 𝑠 ∈ 𝑋 ) → ( ( 𝐹 ∘ 𝑃 ) ‘ 𝑠 ) = ( 𝐹 ‘ ( 𝑃 ‘ 𝑠 ) ) ) |
| 39 |
25 38
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( ( 𝐹 ∘ 𝑃 ) ‘ 𝑠 ) = ( 𝐹 ‘ ( 𝑃 ‘ 𝑠 ) ) ) |
| 40 |
29 37 39
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( 𝑠 𝑁 0 ) = ( ( 𝐹 ∘ 𝑃 ) ‘ 𝑠 ) ) |
| 41 |
28
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( ( 𝑃 ‘ 𝑠 ) 𝐻 1 ) = ( 𝐺 ‘ ( 𝑃 ‘ 𝑠 ) ) ) |
| 42 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
| 43 |
|
id |
⊢ ( 𝑦 = 1 → 𝑦 = 1 ) |
| 44 |
32 43
|
oveqan12d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → ( ( 𝑃 ‘ 𝑥 ) 𝐻 𝑦 ) = ( ( 𝑃 ‘ 𝑠 ) 𝐻 1 ) ) |
| 45 |
|
ovex |
⊢ ( ( 𝑃 ‘ 𝑠 ) 𝐻 1 ) ∈ V |
| 46 |
44 1 45
|
ovmpoa |
⊢ ( ( 𝑠 ∈ 𝑋 ∧ 1 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝑁 1 ) = ( ( 𝑃 ‘ 𝑠 ) 𝐻 1 ) ) |
| 47 |
30 42 46
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( 𝑠 𝑁 1 ) = ( ( 𝑃 ‘ 𝑠 ) 𝐻 1 ) ) |
| 48 |
|
fvco3 |
⊢ ( ( 𝑃 : 𝑋 ⟶ ∪ 𝐾 ∧ 𝑠 ∈ 𝑋 ) → ( ( 𝐺 ∘ 𝑃 ) ‘ 𝑠 ) = ( 𝐺 ‘ ( 𝑃 ‘ 𝑠 ) ) ) |
| 49 |
25 48
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( ( 𝐺 ∘ 𝑃 ) ‘ 𝑠 ) = ( 𝐺 ‘ ( 𝑃 ‘ 𝑠 ) ) ) |
| 50 |
41 47 49
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( 𝑠 𝑁 1 ) = ( ( 𝐺 ∘ 𝑃 ) ‘ 𝑠 ) ) |
| 51 |
2 8 10 23 40 50
|
ishtpyd |
⊢ ( 𝜑 → 𝑁 ∈ ( ( 𝐹 ∘ 𝑃 ) ( 𝐽 Htpy 𝐿 ) ( 𝐺 ∘ 𝑃 ) ) ) |