| Step | Hyp | Ref | Expression | 
						
							| 1 |  | htpyco1.n | ⊢ 𝑁  =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  ( 0 [,] 1 )  ↦  ( ( 𝑃 ‘ 𝑥 ) 𝐻 𝑦 ) ) | 
						
							| 2 |  | htpyco1.j | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 3 |  | htpyco1.p | ⊢ ( 𝜑  →  𝑃  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 4 |  | htpyco1.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐾  Cn  𝐿 ) ) | 
						
							| 5 |  | htpyco1.g | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝐾  Cn  𝐿 ) ) | 
						
							| 6 |  | htpyco1.h | ⊢ ( 𝜑  →  𝐻  ∈  ( 𝐹 ( 𝐾  Htpy  𝐿 ) 𝐺 ) ) | 
						
							| 7 |  | cnco | ⊢ ( ( 𝑃  ∈  ( 𝐽  Cn  𝐾 )  ∧  𝐹  ∈  ( 𝐾  Cn  𝐿 ) )  →  ( 𝐹  ∘  𝑃 )  ∈  ( 𝐽  Cn  𝐿 ) ) | 
						
							| 8 | 3 4 7 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝑃 )  ∈  ( 𝐽  Cn  𝐿 ) ) | 
						
							| 9 |  | cnco | ⊢ ( ( 𝑃  ∈  ( 𝐽  Cn  𝐾 )  ∧  𝐺  ∈  ( 𝐾  Cn  𝐿 ) )  →  ( 𝐺  ∘  𝑃 )  ∈  ( 𝐽  Cn  𝐿 ) ) | 
						
							| 10 | 3 5 9 | syl2anc | ⊢ ( 𝜑  →  ( 𝐺  ∘  𝑃 )  ∈  ( 𝐽  Cn  𝐿 ) ) | 
						
							| 11 |  | iitopon | ⊢ II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) | 
						
							| 12 | 11 | a1i | ⊢ ( 𝜑  →  II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) ) | 
						
							| 13 | 2 12 | cnmpt1st | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  ( 0 [,] 1 )  ↦  𝑥 )  ∈  ( ( 𝐽  ×t  II )  Cn  𝐽 ) ) | 
						
							| 14 | 2 12 13 3 | cnmpt21f | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  ( 0 [,] 1 )  ↦  ( 𝑃 ‘ 𝑥 ) )  ∈  ( ( 𝐽  ×t  II )  Cn  𝐾 ) ) | 
						
							| 15 | 2 12 | cnmpt2nd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  ( 0 [,] 1 )  ↦  𝑦 )  ∈  ( ( 𝐽  ×t  II )  Cn  II ) ) | 
						
							| 16 |  | cntop2 | ⊢ ( 𝑃  ∈  ( 𝐽  Cn  𝐾 )  →  𝐾  ∈  Top ) | 
						
							| 17 | 3 16 | syl | ⊢ ( 𝜑  →  𝐾  ∈  Top ) | 
						
							| 18 |  | toptopon2 | ⊢ ( 𝐾  ∈  Top  ↔  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) ) | 
						
							| 19 | 17 18 | sylib | ⊢ ( 𝜑  →  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) ) | 
						
							| 20 | 19 4 5 | htpycn | ⊢ ( 𝜑  →  ( 𝐹 ( 𝐾  Htpy  𝐿 ) 𝐺 )  ⊆  ( ( 𝐾  ×t  II )  Cn  𝐿 ) ) | 
						
							| 21 | 20 6 | sseldd | ⊢ ( 𝜑  →  𝐻  ∈  ( ( 𝐾  ×t  II )  Cn  𝐿 ) ) | 
						
							| 22 | 2 12 14 15 21 | cnmpt22f | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  ( 0 [,] 1 )  ↦  ( ( 𝑃 ‘ 𝑥 ) 𝐻 𝑦 ) )  ∈  ( ( 𝐽  ×t  II )  Cn  𝐿 ) ) | 
						
							| 23 | 1 22 | eqeltrid | ⊢ ( 𝜑  →  𝑁  ∈  ( ( 𝐽  ×t  II )  Cn  𝐿 ) ) | 
						
							| 24 |  | cnf2 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ ∪  𝐾 )  ∧  𝑃  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝑃 : 𝑋 ⟶ ∪  𝐾 ) | 
						
							| 25 | 2 19 3 24 | syl3anc | ⊢ ( 𝜑  →  𝑃 : 𝑋 ⟶ ∪  𝐾 ) | 
						
							| 26 | 25 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( 𝑃 ‘ 𝑠 )  ∈  ∪  𝐾 ) | 
						
							| 27 | 19 4 5 6 | htpyi | ⊢ ( ( 𝜑  ∧  ( 𝑃 ‘ 𝑠 )  ∈  ∪  𝐾 )  →  ( ( ( 𝑃 ‘ 𝑠 ) 𝐻 0 )  =  ( 𝐹 ‘ ( 𝑃 ‘ 𝑠 ) )  ∧  ( ( 𝑃 ‘ 𝑠 ) 𝐻 1 )  =  ( 𝐺 ‘ ( 𝑃 ‘ 𝑠 ) ) ) ) | 
						
							| 28 | 26 27 | syldan | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( ( ( 𝑃 ‘ 𝑠 ) 𝐻 0 )  =  ( 𝐹 ‘ ( 𝑃 ‘ 𝑠 ) )  ∧  ( ( 𝑃 ‘ 𝑠 ) 𝐻 1 )  =  ( 𝐺 ‘ ( 𝑃 ‘ 𝑠 ) ) ) ) | 
						
							| 29 | 28 | simpld | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( ( 𝑃 ‘ 𝑠 ) 𝐻 0 )  =  ( 𝐹 ‘ ( 𝑃 ‘ 𝑠 ) ) ) | 
						
							| 30 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  𝑠  ∈  𝑋 ) | 
						
							| 31 |  | 0elunit | ⊢ 0  ∈  ( 0 [,] 1 ) | 
						
							| 32 |  | fveq2 | ⊢ ( 𝑥  =  𝑠  →  ( 𝑃 ‘ 𝑥 )  =  ( 𝑃 ‘ 𝑠 ) ) | 
						
							| 33 |  | id | ⊢ ( 𝑦  =  0  →  𝑦  =  0 ) | 
						
							| 34 | 32 33 | oveqan12d | ⊢ ( ( 𝑥  =  𝑠  ∧  𝑦  =  0 )  →  ( ( 𝑃 ‘ 𝑥 ) 𝐻 𝑦 )  =  ( ( 𝑃 ‘ 𝑠 ) 𝐻 0 ) ) | 
						
							| 35 |  | ovex | ⊢ ( ( 𝑃 ‘ 𝑠 ) 𝐻 0 )  ∈  V | 
						
							| 36 | 34 1 35 | ovmpoa | ⊢ ( ( 𝑠  ∈  𝑋  ∧  0  ∈  ( 0 [,] 1 ) )  →  ( 𝑠 𝑁 0 )  =  ( ( 𝑃 ‘ 𝑠 ) 𝐻 0 ) ) | 
						
							| 37 | 30 31 36 | sylancl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( 𝑠 𝑁 0 )  =  ( ( 𝑃 ‘ 𝑠 ) 𝐻 0 ) ) | 
						
							| 38 |  | fvco3 | ⊢ ( ( 𝑃 : 𝑋 ⟶ ∪  𝐾  ∧  𝑠  ∈  𝑋 )  →  ( ( 𝐹  ∘  𝑃 ) ‘ 𝑠 )  =  ( 𝐹 ‘ ( 𝑃 ‘ 𝑠 ) ) ) | 
						
							| 39 | 25 38 | sylan | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( ( 𝐹  ∘  𝑃 ) ‘ 𝑠 )  =  ( 𝐹 ‘ ( 𝑃 ‘ 𝑠 ) ) ) | 
						
							| 40 | 29 37 39 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( 𝑠 𝑁 0 )  =  ( ( 𝐹  ∘  𝑃 ) ‘ 𝑠 ) ) | 
						
							| 41 | 28 | simprd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( ( 𝑃 ‘ 𝑠 ) 𝐻 1 )  =  ( 𝐺 ‘ ( 𝑃 ‘ 𝑠 ) ) ) | 
						
							| 42 |  | 1elunit | ⊢ 1  ∈  ( 0 [,] 1 ) | 
						
							| 43 |  | id | ⊢ ( 𝑦  =  1  →  𝑦  =  1 ) | 
						
							| 44 | 32 43 | oveqan12d | ⊢ ( ( 𝑥  =  𝑠  ∧  𝑦  =  1 )  →  ( ( 𝑃 ‘ 𝑥 ) 𝐻 𝑦 )  =  ( ( 𝑃 ‘ 𝑠 ) 𝐻 1 ) ) | 
						
							| 45 |  | ovex | ⊢ ( ( 𝑃 ‘ 𝑠 ) 𝐻 1 )  ∈  V | 
						
							| 46 | 44 1 45 | ovmpoa | ⊢ ( ( 𝑠  ∈  𝑋  ∧  1  ∈  ( 0 [,] 1 ) )  →  ( 𝑠 𝑁 1 )  =  ( ( 𝑃 ‘ 𝑠 ) 𝐻 1 ) ) | 
						
							| 47 | 30 42 46 | sylancl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( 𝑠 𝑁 1 )  =  ( ( 𝑃 ‘ 𝑠 ) 𝐻 1 ) ) | 
						
							| 48 |  | fvco3 | ⊢ ( ( 𝑃 : 𝑋 ⟶ ∪  𝐾  ∧  𝑠  ∈  𝑋 )  →  ( ( 𝐺  ∘  𝑃 ) ‘ 𝑠 )  =  ( 𝐺 ‘ ( 𝑃 ‘ 𝑠 ) ) ) | 
						
							| 49 | 25 48 | sylan | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( ( 𝐺  ∘  𝑃 ) ‘ 𝑠 )  =  ( 𝐺 ‘ ( 𝑃 ‘ 𝑠 ) ) ) | 
						
							| 50 | 41 47 49 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( 𝑠 𝑁 1 )  =  ( ( 𝐺  ∘  𝑃 ) ‘ 𝑠 ) ) | 
						
							| 51 | 2 8 10 23 40 50 | ishtpyd | ⊢ ( 𝜑  →  𝑁  ∈  ( ( 𝐹  ∘  𝑃 ) ( 𝐽  Htpy  𝐿 ) ( 𝐺  ∘  𝑃 ) ) ) |