Step |
Hyp |
Ref |
Expression |
1 |
|
htpyco2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
2 |
|
htpyco2.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ) |
3 |
|
htpyco2.p |
⊢ ( 𝜑 → 𝑃 ∈ ( 𝐾 Cn 𝐿 ) ) |
4 |
|
htpyco2.h |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝐹 ( 𝐽 Htpy 𝐾 ) 𝐺 ) ) |
5 |
|
cntop1 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) |
6 |
1 5
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
7 |
|
toptopon2 |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
8 |
6 7
|
sylib |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
9 |
|
cnco |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑃 ∈ ( 𝐾 Cn 𝐿 ) ) → ( 𝑃 ∘ 𝐹 ) ∈ ( 𝐽 Cn 𝐿 ) ) |
10 |
1 3 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ∘ 𝐹 ) ∈ ( 𝐽 Cn 𝐿 ) ) |
11 |
|
cnco |
⊢ ( ( 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑃 ∈ ( 𝐾 Cn 𝐿 ) ) → ( 𝑃 ∘ 𝐺 ) ∈ ( 𝐽 Cn 𝐿 ) ) |
12 |
2 3 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ∘ 𝐺 ) ∈ ( 𝐽 Cn 𝐿 ) ) |
13 |
8 1 2
|
htpycn |
⊢ ( 𝜑 → ( 𝐹 ( 𝐽 Htpy 𝐾 ) 𝐺 ) ⊆ ( ( 𝐽 ×t II ) Cn 𝐾 ) ) |
14 |
13 4
|
sseldd |
⊢ ( 𝜑 → 𝐻 ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ) |
15 |
|
cnco |
⊢ ( ( 𝐻 ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ∧ 𝑃 ∈ ( 𝐾 Cn 𝐿 ) ) → ( 𝑃 ∘ 𝐻 ) ∈ ( ( 𝐽 ×t II ) Cn 𝐿 ) ) |
16 |
14 3 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ∘ 𝐻 ) ∈ ( ( 𝐽 ×t II ) Cn 𝐿 ) ) |
17 |
8 1 2 4
|
htpyi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ 𝐽 ) → ( ( 𝑠 𝐻 0 ) = ( 𝐹 ‘ 𝑠 ) ∧ ( 𝑠 𝐻 1 ) = ( 𝐺 ‘ 𝑠 ) ) ) |
18 |
17
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ 𝐽 ) → ( 𝑠 𝐻 0 ) = ( 𝐹 ‘ 𝑠 ) ) |
19 |
18
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ 𝐽 ) → ( 𝑃 ‘ ( 𝑠 𝐻 0 ) ) = ( 𝑃 ‘ ( 𝐹 ‘ 𝑠 ) ) ) |
20 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
21 |
|
txtopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) → ( 𝐽 ×t II ) ∈ ( TopOn ‘ ( ∪ 𝐽 × ( 0 [,] 1 ) ) ) ) |
22 |
8 20 21
|
sylancl |
⊢ ( 𝜑 → ( 𝐽 ×t II ) ∈ ( TopOn ‘ ( ∪ 𝐽 × ( 0 [,] 1 ) ) ) ) |
23 |
|
cntop2 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) |
24 |
1 23
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
25 |
|
toptopon2 |
⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
26 |
24 25
|
sylib |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
27 |
|
cnf2 |
⊢ ( ( ( 𝐽 ×t II ) ∈ ( TopOn ‘ ( ∪ 𝐽 × ( 0 [,] 1 ) ) ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ 𝐻 ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ) → 𝐻 : ( ∪ 𝐽 × ( 0 [,] 1 ) ) ⟶ ∪ 𝐾 ) |
28 |
22 26 14 27
|
syl3anc |
⊢ ( 𝜑 → 𝐻 : ( ∪ 𝐽 × ( 0 [,] 1 ) ) ⟶ ∪ 𝐾 ) |
29 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ 𝐽 ) → 𝑠 ∈ ∪ 𝐽 ) |
30 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
31 |
|
opelxpi |
⊢ ( ( 𝑠 ∈ ∪ 𝐽 ∧ 0 ∈ ( 0 [,] 1 ) ) → 〈 𝑠 , 0 〉 ∈ ( ∪ 𝐽 × ( 0 [,] 1 ) ) ) |
32 |
29 30 31
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ 𝐽 ) → 〈 𝑠 , 0 〉 ∈ ( ∪ 𝐽 × ( 0 [,] 1 ) ) ) |
33 |
|
fvco3 |
⊢ ( ( 𝐻 : ( ∪ 𝐽 × ( 0 [,] 1 ) ) ⟶ ∪ 𝐾 ∧ 〈 𝑠 , 0 〉 ∈ ( ∪ 𝐽 × ( 0 [,] 1 ) ) ) → ( ( 𝑃 ∘ 𝐻 ) ‘ 〈 𝑠 , 0 〉 ) = ( 𝑃 ‘ ( 𝐻 ‘ 〈 𝑠 , 0 〉 ) ) ) |
34 |
28 32 33
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ 𝐽 ) → ( ( 𝑃 ∘ 𝐻 ) ‘ 〈 𝑠 , 0 〉 ) = ( 𝑃 ‘ ( 𝐻 ‘ 〈 𝑠 , 0 〉 ) ) ) |
35 |
|
df-ov |
⊢ ( 𝑠 ( 𝑃 ∘ 𝐻 ) 0 ) = ( ( 𝑃 ∘ 𝐻 ) ‘ 〈 𝑠 , 0 〉 ) |
36 |
|
df-ov |
⊢ ( 𝑠 𝐻 0 ) = ( 𝐻 ‘ 〈 𝑠 , 0 〉 ) |
37 |
36
|
fveq2i |
⊢ ( 𝑃 ‘ ( 𝑠 𝐻 0 ) ) = ( 𝑃 ‘ ( 𝐻 ‘ 〈 𝑠 , 0 〉 ) ) |
38 |
34 35 37
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ 𝐽 ) → ( 𝑠 ( 𝑃 ∘ 𝐻 ) 0 ) = ( 𝑃 ‘ ( 𝑠 𝐻 0 ) ) ) |
39 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
40 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
41 |
39 40
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
42 |
1 41
|
syl |
⊢ ( 𝜑 → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
43 |
|
fvco3 |
⊢ ( ( 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ∧ 𝑠 ∈ ∪ 𝐽 ) → ( ( 𝑃 ∘ 𝐹 ) ‘ 𝑠 ) = ( 𝑃 ‘ ( 𝐹 ‘ 𝑠 ) ) ) |
44 |
42 43
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ 𝐽 ) → ( ( 𝑃 ∘ 𝐹 ) ‘ 𝑠 ) = ( 𝑃 ‘ ( 𝐹 ‘ 𝑠 ) ) ) |
45 |
19 38 44
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ 𝐽 ) → ( 𝑠 ( 𝑃 ∘ 𝐻 ) 0 ) = ( ( 𝑃 ∘ 𝐹 ) ‘ 𝑠 ) ) |
46 |
17
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ 𝐽 ) → ( 𝑠 𝐻 1 ) = ( 𝐺 ‘ 𝑠 ) ) |
47 |
46
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ 𝐽 ) → ( 𝑃 ‘ ( 𝑠 𝐻 1 ) ) = ( 𝑃 ‘ ( 𝐺 ‘ 𝑠 ) ) ) |
48 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
49 |
|
opelxpi |
⊢ ( ( 𝑠 ∈ ∪ 𝐽 ∧ 1 ∈ ( 0 [,] 1 ) ) → 〈 𝑠 , 1 〉 ∈ ( ∪ 𝐽 × ( 0 [,] 1 ) ) ) |
50 |
29 48 49
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ 𝐽 ) → 〈 𝑠 , 1 〉 ∈ ( ∪ 𝐽 × ( 0 [,] 1 ) ) ) |
51 |
|
fvco3 |
⊢ ( ( 𝐻 : ( ∪ 𝐽 × ( 0 [,] 1 ) ) ⟶ ∪ 𝐾 ∧ 〈 𝑠 , 1 〉 ∈ ( ∪ 𝐽 × ( 0 [,] 1 ) ) ) → ( ( 𝑃 ∘ 𝐻 ) ‘ 〈 𝑠 , 1 〉 ) = ( 𝑃 ‘ ( 𝐻 ‘ 〈 𝑠 , 1 〉 ) ) ) |
52 |
28 50 51
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ 𝐽 ) → ( ( 𝑃 ∘ 𝐻 ) ‘ 〈 𝑠 , 1 〉 ) = ( 𝑃 ‘ ( 𝐻 ‘ 〈 𝑠 , 1 〉 ) ) ) |
53 |
|
df-ov |
⊢ ( 𝑠 ( 𝑃 ∘ 𝐻 ) 1 ) = ( ( 𝑃 ∘ 𝐻 ) ‘ 〈 𝑠 , 1 〉 ) |
54 |
|
df-ov |
⊢ ( 𝑠 𝐻 1 ) = ( 𝐻 ‘ 〈 𝑠 , 1 〉 ) |
55 |
54
|
fveq2i |
⊢ ( 𝑃 ‘ ( 𝑠 𝐻 1 ) ) = ( 𝑃 ‘ ( 𝐻 ‘ 〈 𝑠 , 1 〉 ) ) |
56 |
52 53 55
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ 𝐽 ) → ( 𝑠 ( 𝑃 ∘ 𝐻 ) 1 ) = ( 𝑃 ‘ ( 𝑠 𝐻 1 ) ) ) |
57 |
39 40
|
cnf |
⊢ ( 𝐺 ∈ ( 𝐽 Cn 𝐾 ) → 𝐺 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
58 |
2 57
|
syl |
⊢ ( 𝜑 → 𝐺 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
59 |
|
fvco3 |
⊢ ( ( 𝐺 : ∪ 𝐽 ⟶ ∪ 𝐾 ∧ 𝑠 ∈ ∪ 𝐽 ) → ( ( 𝑃 ∘ 𝐺 ) ‘ 𝑠 ) = ( 𝑃 ‘ ( 𝐺 ‘ 𝑠 ) ) ) |
60 |
58 59
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ 𝐽 ) → ( ( 𝑃 ∘ 𝐺 ) ‘ 𝑠 ) = ( 𝑃 ‘ ( 𝐺 ‘ 𝑠 ) ) ) |
61 |
47 56 60
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ 𝐽 ) → ( 𝑠 ( 𝑃 ∘ 𝐻 ) 1 ) = ( ( 𝑃 ∘ 𝐺 ) ‘ 𝑠 ) ) |
62 |
8 10 12 16 45 61
|
ishtpyd |
⊢ ( 𝜑 → ( 𝑃 ∘ 𝐻 ) ∈ ( ( 𝑃 ∘ 𝐹 ) ( 𝐽 Htpy 𝐿 ) ( 𝑃 ∘ 𝐺 ) ) ) |