Metamath Proof Explorer


Theorem htpyco2

Description: Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015)

Ref Expression
Hypotheses htpyco2.f φ F J Cn K
htpyco2.g φ G J Cn K
htpyco2.p φ P K Cn L
htpyco2.h φ H F J Htpy K G
Assertion htpyco2 φ P H P F J Htpy L P G

Proof

Step Hyp Ref Expression
1 htpyco2.f φ F J Cn K
2 htpyco2.g φ G J Cn K
3 htpyco2.p φ P K Cn L
4 htpyco2.h φ H F J Htpy K G
5 cntop1 F J Cn K J Top
6 1 5 syl φ J Top
7 toptopon2 J Top J TopOn J
8 6 7 sylib φ J TopOn J
9 cnco F J Cn K P K Cn L P F J Cn L
10 1 3 9 syl2anc φ P F J Cn L
11 cnco G J Cn K P K Cn L P G J Cn L
12 2 3 11 syl2anc φ P G J Cn L
13 8 1 2 htpycn φ F J Htpy K G J × t II Cn K
14 13 4 sseldd φ H J × t II Cn K
15 cnco H J × t II Cn K P K Cn L P H J × t II Cn L
16 14 3 15 syl2anc φ P H J × t II Cn L
17 8 1 2 4 htpyi φ s J s H 0 = F s s H 1 = G s
18 17 simpld φ s J s H 0 = F s
19 18 fveq2d φ s J P s H 0 = P F s
20 iitopon II TopOn 0 1
21 txtopon J TopOn J II TopOn 0 1 J × t II TopOn J × 0 1
22 8 20 21 sylancl φ J × t II TopOn J × 0 1
23 cntop2 F J Cn K K Top
24 1 23 syl φ K Top
25 toptopon2 K Top K TopOn K
26 24 25 sylib φ K TopOn K
27 cnf2 J × t II TopOn J × 0 1 K TopOn K H J × t II Cn K H : J × 0 1 K
28 22 26 14 27 syl3anc φ H : J × 0 1 K
29 simpr φ s J s J
30 0elunit 0 0 1
31 opelxpi s J 0 0 1 s 0 J × 0 1
32 29 30 31 sylancl φ s J s 0 J × 0 1
33 fvco3 H : J × 0 1 K s 0 J × 0 1 P H s 0 = P H s 0
34 28 32 33 syl2an2r φ s J P H s 0 = P H s 0
35 df-ov s P H 0 = P H s 0
36 df-ov s H 0 = H s 0
37 36 fveq2i P s H 0 = P H s 0
38 34 35 37 3eqtr4g φ s J s P H 0 = P s H 0
39 eqid J = J
40 eqid K = K
41 39 40 cnf F J Cn K F : J K
42 1 41 syl φ F : J K
43 fvco3 F : J K s J P F s = P F s
44 42 43 sylan φ s J P F s = P F s
45 19 38 44 3eqtr4d φ s J s P H 0 = P F s
46 17 simprd φ s J s H 1 = G s
47 46 fveq2d φ s J P s H 1 = P G s
48 1elunit 1 0 1
49 opelxpi s J 1 0 1 s 1 J × 0 1
50 29 48 49 sylancl φ s J s 1 J × 0 1
51 fvco3 H : J × 0 1 K s 1 J × 0 1 P H s 1 = P H s 1
52 28 50 51 syl2an2r φ s J P H s 1 = P H s 1
53 df-ov s P H 1 = P H s 1
54 df-ov s H 1 = H s 1
55 54 fveq2i P s H 1 = P H s 1
56 52 53 55 3eqtr4g φ s J s P H 1 = P s H 1
57 39 40 cnf G J Cn K G : J K
58 2 57 syl φ G : J K
59 fvco3 G : J K s J P G s = P G s
60 58 59 sylan φ s J P G s = P G s
61 47 56 60 3eqtr4d φ s J s P H 1 = P G s
62 8 10 12 16 45 61 ishtpyd φ P H P F J Htpy L P G