Metamath Proof Explorer


Theorem htpyco2

Description: Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015)

Ref Expression
Hypotheses htpyco2.f φFJCnK
htpyco2.g φGJCnK
htpyco2.p φPKCnL
htpyco2.h φHFJHtpyKG
Assertion htpyco2 φPHPFJHtpyLPG

Proof

Step Hyp Ref Expression
1 htpyco2.f φFJCnK
2 htpyco2.g φGJCnK
3 htpyco2.p φPKCnL
4 htpyco2.h φHFJHtpyKG
5 cntop1 FJCnKJTop
6 1 5 syl φJTop
7 toptopon2 JTopJTopOnJ
8 6 7 sylib φJTopOnJ
9 cnco FJCnKPKCnLPFJCnL
10 1 3 9 syl2anc φPFJCnL
11 cnco GJCnKPKCnLPGJCnL
12 2 3 11 syl2anc φPGJCnL
13 8 1 2 htpycn φFJHtpyKGJ×tIICnK
14 13 4 sseldd φHJ×tIICnK
15 cnco HJ×tIICnKPKCnLPHJ×tIICnL
16 14 3 15 syl2anc φPHJ×tIICnL
17 8 1 2 4 htpyi φsJsH0=FssH1=Gs
18 17 simpld φsJsH0=Fs
19 18 fveq2d φsJPsH0=PFs
20 iitopon IITopOn01
21 txtopon JTopOnJIITopOn01J×tIITopOnJ×01
22 8 20 21 sylancl φJ×tIITopOnJ×01
23 cntop2 FJCnKKTop
24 1 23 syl φKTop
25 toptopon2 KTopKTopOnK
26 24 25 sylib φKTopOnK
27 cnf2 J×tIITopOnJ×01KTopOnKHJ×tIICnKH:J×01K
28 22 26 14 27 syl3anc φH:J×01K
29 simpr φsJsJ
30 0elunit 001
31 opelxpi sJ001s0J×01
32 29 30 31 sylancl φsJs0J×01
33 fvco3 H:J×01Ks0J×01PHs0=PHs0
34 28 32 33 syl2an2r φsJPHs0=PHs0
35 df-ov sPH0=PHs0
36 df-ov sH0=Hs0
37 36 fveq2i PsH0=PHs0
38 34 35 37 3eqtr4g φsJsPH0=PsH0
39 eqid J=J
40 eqid K=K
41 39 40 cnf FJCnKF:JK
42 1 41 syl φF:JK
43 fvco3 F:JKsJPFs=PFs
44 42 43 sylan φsJPFs=PFs
45 19 38 44 3eqtr4d φsJsPH0=PFs
46 17 simprd φsJsH1=Gs
47 46 fveq2d φsJPsH1=PGs
48 1elunit 101
49 opelxpi sJ101s1J×01
50 29 48 49 sylancl φsJs1J×01
51 fvco3 H:J×01Ks1J×01PHs1=PHs1
52 28 50 51 syl2an2r φsJPHs1=PHs1
53 df-ov sPH1=PHs1
54 df-ov sH1=Hs1
55 54 fveq2i PsH1=PHs1
56 52 53 55 3eqtr4g φsJsPH1=PsH1
57 39 40 cnf GJCnKG:JK
58 2 57 syl φG:JK
59 fvco3 G:JKsJPGs=PGs
60 58 59 sylan φsJPGs=PGs
61 47 56 60 3eqtr4d φsJsPH1=PGs
62 8 10 12 16 45 61 ishtpyd φPHPFJHtpyLPG