Step |
Hyp |
Ref |
Expression |
1 |
|
htpyco2.f |
|
2 |
|
htpyco2.g |
|
3 |
|
htpyco2.p |
|
4 |
|
htpyco2.h |
|
5 |
|
cntop1 |
|
6 |
1 5
|
syl |
|
7 |
|
toptopon2 |
|
8 |
6 7
|
sylib |
|
9 |
|
cnco |
|
10 |
1 3 9
|
syl2anc |
|
11 |
|
cnco |
|
12 |
2 3 11
|
syl2anc |
|
13 |
8 1 2
|
htpycn |
|
14 |
13 4
|
sseldd |
|
15 |
|
cnco |
|
16 |
14 3 15
|
syl2anc |
|
17 |
8 1 2 4
|
htpyi |
|
18 |
17
|
simpld |
|
19 |
18
|
fveq2d |
|
20 |
|
iitopon |
|
21 |
|
txtopon |
|
22 |
8 20 21
|
sylancl |
|
23 |
|
cntop2 |
|
24 |
1 23
|
syl |
|
25 |
|
toptopon2 |
|
26 |
24 25
|
sylib |
|
27 |
|
cnf2 |
|
28 |
22 26 14 27
|
syl3anc |
|
29 |
|
simpr |
|
30 |
|
0elunit |
|
31 |
|
opelxpi |
|
32 |
29 30 31
|
sylancl |
|
33 |
|
fvco3 |
|
34 |
28 32 33
|
syl2an2r |
|
35 |
|
df-ov |
|
36 |
|
df-ov |
|
37 |
36
|
fveq2i |
|
38 |
34 35 37
|
3eqtr4g |
|
39 |
|
eqid |
|
40 |
|
eqid |
|
41 |
39 40
|
cnf |
|
42 |
1 41
|
syl |
|
43 |
|
fvco3 |
|
44 |
42 43
|
sylan |
|
45 |
19 38 44
|
3eqtr4d |
|
46 |
17
|
simprd |
|
47 |
46
|
fveq2d |
|
48 |
|
1elunit |
|
49 |
|
opelxpi |
|
50 |
29 48 49
|
sylancl |
|
51 |
|
fvco3 |
|
52 |
28 50 51
|
syl2an2r |
|
53 |
|
df-ov |
|
54 |
|
df-ov |
|
55 |
54
|
fveq2i |
|
56 |
52 53 55
|
3eqtr4g |
|
57 |
39 40
|
cnf |
|
58 |
2 57
|
syl |
|
59 |
|
fvco3 |
|
60 |
58 59
|
sylan |
|
61 |
47 56 60
|
3eqtr4d |
|
62 |
8 10 12 16 45 61
|
ishtpyd |
|