Description: Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | htpyco2.f | |
|
htpyco2.g | |
||
htpyco2.p | |
||
htpyco2.h | |
||
Assertion | htpyco2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | htpyco2.f | |
|
2 | htpyco2.g | |
|
3 | htpyco2.p | |
|
4 | htpyco2.h | |
|
5 | cntop1 | |
|
6 | 1 5 | syl | |
7 | toptopon2 | |
|
8 | 6 7 | sylib | |
9 | cnco | |
|
10 | 1 3 9 | syl2anc | |
11 | cnco | |
|
12 | 2 3 11 | syl2anc | |
13 | 8 1 2 | htpycn | |
14 | 13 4 | sseldd | |
15 | cnco | |
|
16 | 14 3 15 | syl2anc | |
17 | 8 1 2 4 | htpyi | |
18 | 17 | simpld | |
19 | 18 | fveq2d | |
20 | iitopon | |
|
21 | txtopon | |
|
22 | 8 20 21 | sylancl | |
23 | cntop2 | |
|
24 | 1 23 | syl | |
25 | toptopon2 | |
|
26 | 24 25 | sylib | |
27 | cnf2 | |
|
28 | 22 26 14 27 | syl3anc | |
29 | simpr | |
|
30 | 0elunit | |
|
31 | opelxpi | |
|
32 | 29 30 31 | sylancl | |
33 | fvco3 | |
|
34 | 28 32 33 | syl2an2r | |
35 | df-ov | |
|
36 | df-ov | |
|
37 | 36 | fveq2i | |
38 | 34 35 37 | 3eqtr4g | |
39 | eqid | |
|
40 | eqid | |
|
41 | 39 40 | cnf | |
42 | 1 41 | syl | |
43 | fvco3 | |
|
44 | 42 43 | sylan | |
45 | 19 38 44 | 3eqtr4d | |
46 | 17 | simprd | |
47 | 46 | fveq2d | |
48 | 1elunit | |
|
49 | opelxpi | |
|
50 | 29 48 49 | sylancl | |
51 | fvco3 | |
|
52 | 28 50 51 | syl2an2r | |
53 | df-ov | |
|
54 | df-ov | |
|
55 | 54 | fveq2i | |
56 | 52 53 55 | 3eqtr4g | |
57 | 39 40 | cnf | |
58 | 2 57 | syl | |
59 | fvco3 | |
|
60 | 58 59 | sylan | |
61 | 47 56 60 | 3eqtr4d | |
62 | 8 10 12 16 45 61 | ishtpyd | |