| Step |
Hyp |
Ref |
Expression |
| 1 |
|
htpyco2.f |
|
| 2 |
|
htpyco2.g |
|
| 3 |
|
htpyco2.p |
|
| 4 |
|
htpyco2.h |
|
| 5 |
|
cntop1 |
|
| 6 |
1 5
|
syl |
|
| 7 |
|
toptopon2 |
|
| 8 |
6 7
|
sylib |
|
| 9 |
|
cnco |
|
| 10 |
1 3 9
|
syl2anc |
|
| 11 |
|
cnco |
|
| 12 |
2 3 11
|
syl2anc |
|
| 13 |
8 1 2
|
htpycn |
|
| 14 |
13 4
|
sseldd |
|
| 15 |
|
cnco |
|
| 16 |
14 3 15
|
syl2anc |
|
| 17 |
8 1 2 4
|
htpyi |
|
| 18 |
17
|
simpld |
|
| 19 |
18
|
fveq2d |
|
| 20 |
|
iitopon |
|
| 21 |
|
txtopon |
|
| 22 |
8 20 21
|
sylancl |
|
| 23 |
|
cntop2 |
|
| 24 |
1 23
|
syl |
|
| 25 |
|
toptopon2 |
|
| 26 |
24 25
|
sylib |
|
| 27 |
|
cnf2 |
|
| 28 |
22 26 14 27
|
syl3anc |
|
| 29 |
|
simpr |
|
| 30 |
|
0elunit |
|
| 31 |
|
opelxpi |
|
| 32 |
29 30 31
|
sylancl |
|
| 33 |
|
fvco3 |
|
| 34 |
28 32 33
|
syl2an2r |
|
| 35 |
|
df-ov |
|
| 36 |
|
df-ov |
|
| 37 |
36
|
fveq2i |
|
| 38 |
34 35 37
|
3eqtr4g |
|
| 39 |
|
eqid |
|
| 40 |
|
eqid |
|
| 41 |
39 40
|
cnf |
|
| 42 |
1 41
|
syl |
|
| 43 |
|
fvco3 |
|
| 44 |
42 43
|
sylan |
|
| 45 |
19 38 44
|
3eqtr4d |
|
| 46 |
17
|
simprd |
|
| 47 |
46
|
fveq2d |
|
| 48 |
|
1elunit |
|
| 49 |
|
opelxpi |
|
| 50 |
29 48 49
|
sylancl |
|
| 51 |
|
fvco3 |
|
| 52 |
28 50 51
|
syl2an2r |
|
| 53 |
|
df-ov |
|
| 54 |
|
df-ov |
|
| 55 |
54
|
fveq2i |
|
| 56 |
52 53 55
|
3eqtr4g |
|
| 57 |
39 40
|
cnf |
|
| 58 |
2 57
|
syl |
|
| 59 |
|
fvco3 |
|
| 60 |
58 59
|
sylan |
|
| 61 |
47 56 60
|
3eqtr4d |
|
| 62 |
8 10 12 16 45 61
|
ishtpyd |
|