Step |
Hyp |
Ref |
Expression |
1 |
|
htpyco1.n |
|
2 |
|
htpyco1.j |
|
3 |
|
htpyco1.p |
|
4 |
|
htpyco1.f |
|
5 |
|
htpyco1.g |
|
6 |
|
htpyco1.h |
|
7 |
|
cnco |
|
8 |
3 4 7
|
syl2anc |
|
9 |
|
cnco |
|
10 |
3 5 9
|
syl2anc |
|
11 |
|
iitopon |
|
12 |
11
|
a1i |
|
13 |
2 12
|
cnmpt1st |
|
14 |
2 12 13 3
|
cnmpt21f |
|
15 |
2 12
|
cnmpt2nd |
|
16 |
|
cntop2 |
|
17 |
3 16
|
syl |
|
18 |
|
toptopon2 |
|
19 |
17 18
|
sylib |
|
20 |
19 4 5
|
htpycn |
|
21 |
20 6
|
sseldd |
|
22 |
2 12 14 15 21
|
cnmpt22f |
|
23 |
1 22
|
eqeltrid |
|
24 |
|
cnf2 |
|
25 |
2 19 3 24
|
syl3anc |
|
26 |
25
|
ffvelrnda |
|
27 |
19 4 5 6
|
htpyi |
|
28 |
26 27
|
syldan |
|
29 |
28
|
simpld |
|
30 |
|
simpr |
|
31 |
|
0elunit |
|
32 |
|
fveq2 |
|
33 |
|
id |
|
34 |
32 33
|
oveqan12d |
|
35 |
|
ovex |
|
36 |
34 1 35
|
ovmpoa |
|
37 |
30 31 36
|
sylancl |
|
38 |
|
fvco3 |
|
39 |
25 38
|
sylan |
|
40 |
29 37 39
|
3eqtr4d |
|
41 |
28
|
simprd |
|
42 |
|
1elunit |
|
43 |
|
id |
|
44 |
32 43
|
oveqan12d |
|
45 |
|
ovex |
|
46 |
44 1 45
|
ovmpoa |
|
47 |
30 42 46
|
sylancl |
|
48 |
|
fvco3 |
|
49 |
25 48
|
sylan |
|
50 |
41 47 49
|
3eqtr4d |
|
51 |
2 8 10 23 40 50
|
ishtpyd |
|