| Step | Hyp | Ref | Expression | 
						
							| 1 |  | htpyco1.n |  | 
						
							| 2 |  | htpyco1.j |  | 
						
							| 3 |  | htpyco1.p |  | 
						
							| 4 |  | htpyco1.f |  | 
						
							| 5 |  | htpyco1.g |  | 
						
							| 6 |  | htpyco1.h |  | 
						
							| 7 |  | cnco |  | 
						
							| 8 | 3 4 7 | syl2anc |  | 
						
							| 9 |  | cnco |  | 
						
							| 10 | 3 5 9 | syl2anc |  | 
						
							| 11 |  | iitopon |  | 
						
							| 12 | 11 | a1i |  | 
						
							| 13 | 2 12 | cnmpt1st |  | 
						
							| 14 | 2 12 13 3 | cnmpt21f |  | 
						
							| 15 | 2 12 | cnmpt2nd |  | 
						
							| 16 |  | cntop2 |  | 
						
							| 17 | 3 16 | syl |  | 
						
							| 18 |  | toptopon2 |  | 
						
							| 19 | 17 18 | sylib |  | 
						
							| 20 | 19 4 5 | htpycn |  | 
						
							| 21 | 20 6 | sseldd |  | 
						
							| 22 | 2 12 14 15 21 | cnmpt22f |  | 
						
							| 23 | 1 22 | eqeltrid |  | 
						
							| 24 |  | cnf2 |  | 
						
							| 25 | 2 19 3 24 | syl3anc |  | 
						
							| 26 | 25 | ffvelcdmda |  | 
						
							| 27 | 19 4 5 6 | htpyi |  | 
						
							| 28 | 26 27 | syldan |  | 
						
							| 29 | 28 | simpld |  | 
						
							| 30 |  | simpr |  | 
						
							| 31 |  | 0elunit |  | 
						
							| 32 |  | fveq2 |  | 
						
							| 33 |  | id |  | 
						
							| 34 | 32 33 | oveqan12d |  | 
						
							| 35 |  | ovex |  | 
						
							| 36 | 34 1 35 | ovmpoa |  | 
						
							| 37 | 30 31 36 | sylancl |  | 
						
							| 38 |  | fvco3 |  | 
						
							| 39 | 25 38 | sylan |  | 
						
							| 40 | 29 37 39 | 3eqtr4d |  | 
						
							| 41 | 28 | simprd |  | 
						
							| 42 |  | 1elunit |  | 
						
							| 43 |  | id |  | 
						
							| 44 | 32 43 | oveqan12d |  | 
						
							| 45 |  | ovex |  | 
						
							| 46 | 44 1 45 | ovmpoa |  | 
						
							| 47 | 30 42 46 | sylancl |  | 
						
							| 48 |  | fvco3 |  | 
						
							| 49 | 25 48 | sylan |  | 
						
							| 50 | 41 47 49 | 3eqtr4d |  | 
						
							| 51 | 2 8 10 23 40 50 | ishtpyd |  |