Metamath Proof Explorer


Theorem htpyco1

Description: Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015)

Ref Expression
Hypotheses htpyco1.n N = x X , y 0 1 P x H y
htpyco1.j φ J TopOn X
htpyco1.p φ P J Cn K
htpyco1.f φ F K Cn L
htpyco1.g φ G K Cn L
htpyco1.h φ H F K Htpy L G
Assertion htpyco1 φ N F P J Htpy L G P

Proof

Step Hyp Ref Expression
1 htpyco1.n N = x X , y 0 1 P x H y
2 htpyco1.j φ J TopOn X
3 htpyco1.p φ P J Cn K
4 htpyco1.f φ F K Cn L
5 htpyco1.g φ G K Cn L
6 htpyco1.h φ H F K Htpy L G
7 cnco P J Cn K F K Cn L F P J Cn L
8 3 4 7 syl2anc φ F P J Cn L
9 cnco P J Cn K G K Cn L G P J Cn L
10 3 5 9 syl2anc φ G P J Cn L
11 iitopon II TopOn 0 1
12 11 a1i φ II TopOn 0 1
13 2 12 cnmpt1st φ x X , y 0 1 x J × t II Cn J
14 2 12 13 3 cnmpt21f φ x X , y 0 1 P x J × t II Cn K
15 2 12 cnmpt2nd φ x X , y 0 1 y J × t II Cn II
16 cntop2 P J Cn K K Top
17 3 16 syl φ K Top
18 toptopon2 K Top K TopOn K
19 17 18 sylib φ K TopOn K
20 19 4 5 htpycn φ F K Htpy L G K × t II Cn L
21 20 6 sseldd φ H K × t II Cn L
22 2 12 14 15 21 cnmpt22f φ x X , y 0 1 P x H y J × t II Cn L
23 1 22 eqeltrid φ N J × t II Cn L
24 cnf2 J TopOn X K TopOn K P J Cn K P : X K
25 2 19 3 24 syl3anc φ P : X K
26 25 ffvelrnda φ s X P s K
27 19 4 5 6 htpyi φ P s K P s H 0 = F P s P s H 1 = G P s
28 26 27 syldan φ s X P s H 0 = F P s P s H 1 = G P s
29 28 simpld φ s X P s H 0 = F P s
30 simpr φ s X s X
31 0elunit 0 0 1
32 fveq2 x = s P x = P s
33 id y = 0 y = 0
34 32 33 oveqan12d x = s y = 0 P x H y = P s H 0
35 ovex P s H 0 V
36 34 1 35 ovmpoa s X 0 0 1 s N 0 = P s H 0
37 30 31 36 sylancl φ s X s N 0 = P s H 0
38 fvco3 P : X K s X F P s = F P s
39 25 38 sylan φ s X F P s = F P s
40 29 37 39 3eqtr4d φ s X s N 0 = F P s
41 28 simprd φ s X P s H 1 = G P s
42 1elunit 1 0 1
43 id y = 1 y = 1
44 32 43 oveqan12d x = s y = 1 P x H y = P s H 1
45 ovex P s H 1 V
46 44 1 45 ovmpoa s X 1 0 1 s N 1 = P s H 1
47 30 42 46 sylancl φ s X s N 1 = P s H 1
48 fvco3 P : X K s X G P s = G P s
49 25 48 sylan φ s X G P s = G P s
50 41 47 49 3eqtr4d φ s X s N 1 = G P s
51 2 8 10 23 40 50 ishtpyd φ N F P J Htpy L G P